Photonics Research, 2017, 5 (6): 06000617, Published Online: Dec. 7, 2017  

Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1,1) interferometers Download: 577次

Author Affiliations
Key Laboratory of Quantum Information and Quantum Optoelectronic Devices of Shaanxi Province, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
Copy Citation Text

Jun Liu, Wenxiao Liu, Shitao Li, Dong Wei, Hong Gao, Fuli Li. Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1,1) interferometers[J]. Photonics Research, 2017, 5(6): 06000617.

References

[1] A. A. Michelson, E. W. Morley. On the relative motion of the earth and of the luminiferous ether. Am. J. Sci., 1887, 34: 333-345.

[2] ScullyM. O.ZubairyM. S., Quantum Optics (Cambridge University, 1997).

[3] H. Lee, P. Kok, J. P. Dowling. A quantum Rosetta stone for interferometry. J. Mod. Opt., 2002, 49: 2325-2338.

[4] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 1981, 23: 1693-1708.

[5] M. Xiao, L. A. Wu, H. J. Kimble. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett., 1987, 59: 278-281.

[6] A. Luis. Squeezed coherent states as feasible approximations to phase-optimized states. Phys. Lett. A, 2006, 354: 71-78.

[7] K. McKenzie, D. A. Shaddock, D. E. McCelland, B. C. Buchler, P. K. Lam. Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection. Phys. Rev. Lett., 2002, 88: 231102.

[8] W. E. Althouse, M. E. Zucker. The Laser Interferometer Gravitational-Wave Observatory. Science, 1992, 256: 325-333.

[9] B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, M. Araya. LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep. Prog. Phys., 2009, 72: 076901.

[10] B. Yurke, S. L. McCall, J. R. Klauder. SU(2) and SU(1,1) interferometers. Phys. Rev. A, 1986, 33: 4033-4054.

[11] Z. Y. Ou. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer. Phys. Rev. A, 2012, 85: 023815.

[12] A. M. Marino, N. V. Corzo Trejo, P. D. Lett. Effect of losses on the performance of an SU(1,1) interferometer. Phys. Rev. A, 2012, 86: 023844.

[13] J. T. Jing, C. J. Liu, Z. F. Zhou, Z. Y. Ou, W. Zhang. Realization of a nonlinear interferometer with parametric amplifiers. Appl. Phys. Lett., 2011, 99: 011110.

[14] J. Kong, Z. Y. Ou, W. P. Zhang. Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter. Phys. Rev. A, 2013, 87: 023825.

[15] Y. Gao. Quantum optical metrology in the lossy SU(2) and SU(1,1) interferometers. Phys. Rev. A, 2016, 94: 023834.

[16] C. Sparaciari, S. Olivares, M. G. A. Paris. Gaussian-state interferometry with passive and active elements. Phys. Rev. A, 2016, 93: 023810.

[17] W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, G. S. Agarwal. Parity detection in quantum optical metrology without number-resolving detectors. New J. Phys., 2010, 12: 113025.

[18] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, J. P. Dowling. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett., 2010, 104: 103602.

[19] W. N. Plick, J. P. Dowling, G. S. Agarwal. Coherent-light-boosted, sub-shot noise, quantum interferometry. New J. Phys., 2010, 12: 083014.

[20] H. Yonezawa, T. Aoki, A. Furusawa. Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431: 430-433.

[21] V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, F. Sciarrino. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun., 2013, 4: 2432.

[22] S. L. Braunstein, P. Van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77: 513-577.

[23] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 1992, 45: 8185-8189.

[24] J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett., 1998, 80: 3217-3219.

[25] J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, M. J. Padgett. Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Express, 2009, 17: 8287-8293.

[26] V. D’Ambrosio, F. Cardano, E. Karimi, E. Nagali, E. Santamato, L. Marrucci, F. Sciarrino. Test of mutually unbiased bases for six-dimensional photonic quantum systems. Sci. Rep., 2013, 3: 2726.

[27] W. Li, H. Hu, N. K. Dutta. High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers. J. Mod. Opt., 2013, 60: 1741-1749.

[28] A. Vaziri, J. W. Pan, T. Jennewein, G. Weihs, A. Zeilinger. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett., 2003, 91: 227902.

[29] A. K. Jha, G. S. Agarwal, R. W. Boyd. Supersensitive measurement of angular displacements using entangled photons. Phys. Rev. A, 2011, 83: 053829.

[30] Z. J. Zhang, T. Y. Qiao, K. Ma, J. D. Zhang, L. Z. Cen, F. Wang, Y. Zhao. Super-resolving angular rotation measurement using binary-outcome homodyne detection. Opt. Express, 2016, 24: 18477-18484.

[31] Z. J. Zhang, T. Y. Qiao, K. Ma, L. Z. Cen, J. D. Zhang, F. Wang, Y. Zhao. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement. Opt. Lett., 2016, 41: 3856-3859.

[32] A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, K. M. Jones. Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett., 2008, 101: 093602.

Jun Liu, Wenxiao Liu, Shitao Li, Dong Wei, Hong Gao, Fuli Li. Enhancement of the angular rotation measurement sensitivity based on SU(2) and SU(1,1) interferometers[J]. Photonics Research, 2017, 5(6): 06000617.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!