Photonics Research, 2018, 6 (4): 04000228, Published Online: Aug. 1, 2018   

Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude Download: 955次

Author Affiliations
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
Copy Citation Text

Sheng Liu, Shuxia Qi, Yi Zhang, Peng Li, Dongjing Wu, Lei Han, Jianlin Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 2018, 6(4): 04000228.

References

[1] M. Christian, J. Alexander, F. Severin, B. Stefan, R.-M. Monika. Tailoring of arbitrary optical vector beams. New J. Phys., 2007, 9: 78.

[2] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 2009, 1: 1-57.

[3] S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs. Focusing light to a tighter spot. Opt. Commun., 2000, 179: 1-7.

[4] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 2003, 91: 233901.

[5] H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C. T. Chong. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics, 2008, 2: 501-505.

[6] Y. Kozawa, S. Sato. Focusing property of a double-ring-shaped radially polarized beam. Opt. Lett., 2006, 31: 820-822.

[7] Y. Zhao, Q. Zhan, Y. Zhang, Y.-P. Li. Creation of a three-dimensional optical chain for controllable particle delivery. Opt. Lett., 2005, 30: 848-850.

[8] X. Jiao, S. Liu, Q. Wang, X. Gan, P. Li, J. Zhao. Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles. Opt. Lett., 2012, 37: 1041-1043.

[9] W. Zhang, S. Liu, P. Li, X. Jiao, J. Zhao. Controlling the polarization singularities of the focused azimuthally polarized beams. Opt. Express, 2013, 21: 974-983.

[10] P. Li, S. Liu, G. Xie, T. Peng, J. Zhao. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams. Opt. Express, 2015, 23: 7131-7139.

[11] Y. Zhang, P. Li, S. Liu, L. Han, H. Cheng, J. Zhao. Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases. Opt. Express, 2016, 24: 28409-28418.

[12] X. Wang, J. Chen, Y. Li, J. Ding, C. Guo, H. Wang. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett., 2010, 105: 253602.

[13] G. Milione, H. Sztul, D. Nolan, R. Alfano. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 2011, 107: 053601.

[14] X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, D. Fan. Hybrid-order Poincaré sphere. Phys. Rev. A, 2015, 91: 023801.

[15] G. Milione, S. Evans, D. A. Nolan, R. R. Alfano. Higher order Pancharatnam-Berry phase and the angular momentum of light. Phys. Rev. Lett., 2012, 108: 190401.

[16] S. Liu, M. Wang, P. Li, P. Zhang, J. Zhao. Abrupt polarization transition of vector autofocusing Airy beams. Opt. Lett., 2013, 38: 2416-2418.

[17] S. Liu, P. Li, Y. Zhang, X. Gan, M. Wang, J. Zhao. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift. Sci. Rep., 2016, 6: 20774.

[18] J. Zhou, W. Zhang, Y. Liu, Y. Ke, Y. Liu, H. Luo, S. Wen. Spin-dependent manipulating of vector beams by tailoring polarization. Sci. Rep., 2016, 6: 34276.

[19] B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, Y. Lu. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask. Sci. Rep., 2015, 5: 17484.

[20] F. Cardano, L. Marrucci. Spin-orbit photonics. Nat. Photonics, 2015, 9: 776-778.

[21] X. Ling, X. Yi, X. Zhou, Y. Liu, W. Shu, H. Luo, S. Wen. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Appl. Phys. Lett., 2014, 105: 151101.

[22] Y. Zhang, P. Li, S. Liu, J. Zhao. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Opt. Lett., 2015, 40: 4444-4447.

[23] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 2004, 12: 3377-3382.

[24] T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Forces in optical tweezers with radially and azimuthally polarized trapping beams. Opt. Lett., 2008, 33: 122-124.

[25] X. Xie, Y. Chen, K. Yang, J. Zhou. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett., 2014, 113: 263901.

[26] D. P. Biss, K. S. Youngworth, T. G. Brown. Dark-field imaging with cylindrical-vector beams. Appl. Opt., 2006, 45: 470.

[27] C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode. Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett., 2011, 106: 123901.

[28] C. Loussert, E. Brasselet. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media. Opt. Lett., 2010, 35: 7-9.

[29] Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett., 2005, 30: 3063-3065.

[30] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel. Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett., 2007, 32: 1468-1470.

[31] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 2006, 96: 163905.

[32] Z. Bomzon, G. Biener, V. Kleiner, E. Hasman. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett., 2002, 27: 285-287.

[33] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, X. Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 2016, 3: 1558-1563.

[34] Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, S. Wen. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl. Phys. Lett., 2014, 104: 191110.

[35] M. M. Sánchez-López, J. A. Davis, N. Hashimoto, I. Moreno, E. Hurtado, K. Badham, A. Tanabe, S. W. Delaney. Performance of a q-plate tunable retarder in reflection for the switchable generation of both first- and second-order vector beams. Opt. Lett., 2016, 41: 13-16.

[36] Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, S. Wen. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photon. Res., 2017, 5: 15-21.

[37] D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, A. Forbes. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 2016, 10: 327-332.

[38] X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, H. T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 2007, 32: 3549-3551.

[39] P. H. Jones, M. Rashid, M. Makita, O. M. Maragò. Sagnac interferometer method for synthesis of fractional polarization vortices. Opt. Lett., 2009, 34: 2560-2562.

[40] H. Chen, J. Hao, B. F. Zhang, J. Xu, J. Ding, H. T. Wang. Generation of vector beam with space-variant distribution of both polarization and phase. Opt. Lett., 2011, 36: 3179-3181.

[41] I. Moreno, J. A. Davis, D. M. Cottrell, R. Donoso. Encoding high-order cylindrically polarized light beams. Appl. Opt., 2014, 53: 5493-5501.

[42] S. Liu, P. Li, T. Peng, J. Zhao. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt. Express, 2012, 20: 21715-21721.

[43] S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, S. Wen. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt. Lett., 2014, 39: 5274-5276.

[44] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 2016, 41: 2205-2208.

[45] Y. Zhang, P. Li, C. Ma, S. Liu, H. Cheng, L. Han, J. Zhao. Efficient generation of vector beams by calibrating the phase response of a spatial light modulator. Appl. Opt., 2017, 56: 4956-4960.

[46] S. Li, S. Qian, L. Kong, Z. Ren, Y. Li, C. Tu, H. Wang. An efficient and robust scheme for controlling the states of polarization in a Sagnac interferometric configuration. Europhys. Lett., 2014, 105: 64006.

[47] U. Ruiz, P. Pagliusi, C. Provenzano, G. Cipparrone. Highly efficient generation of vector beams through polarization holograms. Appl. Phys. Lett., 2013, 102: 161104.

[48] S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, J. Zhao. A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase. Appl. Phys. Lett., 2017, 110: 171112.

[49] H. Cheng, P. Li, S. Liu, P. Chen, L. Han, Y. Zhang, W. Hu, J. Zhao. Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams. Appl. Phys. Lett., 2017, 111: 141901.

[50] L. Han, S. Liu, P. Li, Y. Zhang, H. Cheng, X. Gan, J. Zhao. Managing focal fields of vector beams with multiple polarization singularities. Appl. Opt., 2016, 55: 9049-9053.

[51] Y. Liu, Z. Liu, J. Zhou, X. Ling, W. Shu, H. Luo, S. Wen. Measurements of Pancharatnam-Berry phase in mode transformations on hybrid-order Poincaré sphere. Opt. Lett., 2017, 42: 3447-3450.

[52] J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno. Encoding amplitude information onto phase-only filters. Appl. Opt., 1999, 38: 5004-5013.

Sheng Liu, Shuxia Qi, Yi Zhang, Peng Li, Dongjing Wu, Lei Han, Jianlin Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 2018, 6(4): 04000228.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!