Advanced Photonics, 2021, 3 (2): 026001, Published Online: Mar. 4, 2021   

Glide symmetry for mode control and significant suppression of coupling in dual-strip SSPP transmission lines Download: 856次

Author Affiliations
1 Southeast University, School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Nanjing, China
2 Southeast University, Institute of Electromagnetic Space, Nanjing, China
Copy Citation Text

Xiao Tian Yan, Wenxuan Tang, Jun Feng Liu, Meng Wang, Xin Xin Gao, Tie Jun Cui. Glide symmetry for mode control and significant suppression of coupling in dual-strip SSPP transmission lines[J]. Advanced Photonics, 2021, 3(2): 026001.

References

[1] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830.

[2] J. B. Pendry. Mimicking surface plasmons with structured surfaces. Science, 2004, 305(5685): 847-848.

[3] W. X. Tang, et al.. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv. Opt. Mater., 2019, 7(1): 1800421.

[4] X. Shen, et al.. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(1): 40-45.

[5] H. F. Ma, et al.. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons: broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev., 2014, 8(1): 146-151.

[6] L. Liu, et al.. Multi-channel composite spoof surface plasmon polaritons propagating along periodically corrugated metallic thin films. J. Appl. Phys., 2014, 116(1): 013501.

[7] W. Zhang, et al.. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Appl. Phys. Lett., 2015, 106(2): 021104.

[8] H. C. Zhang, et al.. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies: amplification of spoof surface plasmon polaritons. Laser Photonics Rev., 2015, 9(1): 83-90.

[9] Q. Zhang, et al.. A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters. Sci. Rep., 2015, 5(1): 16531.

[10] X. Shen, T. J. Cui. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett., 2013, 102(21): 211909.

[11] Y. J. Zhou, B. J. Yang. A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system. Opt. Express, 2014, 22(18): 21589-21599.

[12] J. Y. Yin, et al.. Endfire radiations of spoof surface plasmon polaritons. Antennas Wireless Propag. Lett., 2017, 16: 597-600.

[13] Q. Zhang, Q. Zhang, Y. Chen. Spoof surface plasmon polariton leaky-wave antennas using periodically loaded patches above PEC and AMC ground planes. Antennas Wireless Propag. Lett., 2017, 16: 3014-3017.

[14] H. C. Zhang, et al.. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci. Appl., 2020, 9(1): 113.

[15] W. X. Tang, et al.. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line. Sci. Rep., 2017, 7(1): 41077.

[16] A. Kianinejad, Z. N. Chen, C.-W. Qiu. Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation. IEEE Trans. Microwave Theory Tech., 2016, 64(10): 3078-3086.

[17] H. C. Zhang, et al.. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics, 2015, 2(9): 1333-1340.

[18] Y. Liang, et al.. On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Sci. Rep., 2015, 5(1): 14853.

[19] A. Hessel, et al.. Propagation in periodically loaded waveguides with higher symmetries. Proc. IEEE, 1973, 61(2): 183-195.

[20] P. Padilla, et al.. Glide symmetry to prevent the lowest stopband of printed corrugated transmission lines. IEEE Microwave Wireless Comp. Lett., 2018, 28(9): 750-752.

[21] F. Ghasemifard, M. Norgren, O. Quevedo-Teruel. Twist and polar glide symmetries: an additional degree of freedom to control the propagation characteristics of periodic structures. Sci. Rep., 2018, 8(1): 11266.

[22] O. Quevedo-Teruel, M. Ebrahimpouri, M. Ng Mou Kehn. Ultrawideband metasurface lenses based on off-shifted opposite layers. Antennas Wireless Propag. Lett., 2016, 15: 484-487.

[23] L. Liu, et al.. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv. Sci., 2018, 5(11): 1800661.

[24] L. Wang, J. L. Gomez-Tornero, O. Quevedo-Teruel. Substrate integrated waveguide leaky-wave antenna with wide bandwidth via prism coupling. IEEE Trans. Microwave Theory Tech., 2018, 66(6): 3110-3118.

[25] H. C. Zhang, et al.. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics, 2016, 3(1): 139-146.

[26] G. Valerio, et al.. Glide-symmetric all-metal holey metasurfaces for low-dispersive artificial materials: modeling and properties. IEEE Trans. Microwave Theory Tech., 2018, 66(7): 3210-3223.

[27] A. Ma, Y. Li, X. Zhang. Coupled mode theory for surface plasmon polariton waveguides. Plasmonics, 2013, 8(2): 769-777.

Xiao Tian Yan, Wenxuan Tang, Jun Feng Liu, Meng Wang, Xin Xin Gao, Tie Jun Cui. Glide symmetry for mode control and significant suppression of coupling in dual-strip SSPP transmission lines[J]. Advanced Photonics, 2021, 3(2): 026001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!