Photonics Research, 2020, 8 (7): 07001148, Published Online: Jun. 11, 2020  

Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces Download: 757次

Author Affiliations
1 Engineering Research Center of Optical Instrument and Systems, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
3 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
4 e-mail: jwen@usst.edu.cn
5 e-mail: dwzhang@usst.edu.cn
Copy Citation Text

Binbin Yu, Jing Wen, Lei Chen, Leihong Zhang, Yulong Fan, Bo Dai, Saima Kanwal, Dangyuan Lei, Dawei Zhang. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces[J]. Photonics Research, 2020, 8(7): 07001148.

References

[1] M. V. Berry, N. L. Balazs. Nonspreading wave packets. Am. J. Phys., 1979, 47: 264-267.

[2] G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides. Observation of accelerating Airy beams. Phys. Rev. Lett., 2007, 99: 075103.

[3] G. A. Siviloglou, D. N. Christodoulides. Accelerating finite energy Airy beams. Opt. Lett., 2007, 32: 979-981.

[4] A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, J. M. Dudley. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl. Phys. Lett., 2012, 101: 071110.

[5] L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu. Plasmonic Airy beam generated by in-plane diffraction. Phys. Rev. Lett., 2011, 107: 126804.

[6] P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides. Curved plasma channel generation using ultraintense Airy beams. Science, 2009, 324: 229-232.

[7] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 2011, 5: 335-342.

[8] P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang. Plasmonic Airy beams with dynamically controlled trajectories. Opt. Lett., 2011, 36: 3191-3193.

[9] A. Salandrino, N. Engheta. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B, 2006, 74: 075103.

[10] F. J. Gunn-Moore, T. Vettenburg, H. I. Dalgarno, K. Dholakia, J. Nylk, C. Coll-Lladó, D. E. Ferrier, T. Čižmár. Light-sheet microscopy using an Airy beam. Nat. Methods., 2014, 11: 541-544.

[11] Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, K. Dholakia. A compact Airy beam light sheet microscope with a tilted cylindrical lens. Biomed. Opt. Express., 2014, 5: 3434-3442.

[12] J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, K. Dholakia. Light-sheet microscopy with attenuation-compensated propagation-invariant beams. Sci. Adv., 2018, 4: eaar4817.

[13] S. Jia, J. C. Vaughan, X. Zhuang. Isotropic 3D super-resolution imaging with a self-bending point spread function. Nat. Photonics., 2014, 8: 302-306.

[14] G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides. Ballistic dynamics of Airy beams. Opt. Lett., 2008, 33: 207-209.

[15] Z. Ren, Q. Wu, Y. Shi, C. Chen, J. Wu, H. Wang. Production of accelerating quad Airy beams and their optical characteristics. Opt. Express, 2014, 22: 15154-15164.

[16] J. Broky, G. A. Siviloglou, A. Dogariu, D. N. Christodoulides. Self-healing properties of optical Airy beams. Opt. Express, 2008, 16: 12880-12891.

[17] Q. Lu, S. Gao, L. Sheng, J. Wu, Y. Qiao. Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulence. Appl. Opt., 2017, 56: 3750-3757.

[18] D. M. Cottrell, J. A. Davis, T. M. Hazard. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Opt. Lett., 2009, 34: 2634-2636.

[19] J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, D. M. Cottrell. Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns. Appl. Opt., 2009, 48: 3170-3176.

[20] B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, Y. Lu. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask. Sci. Rep., 2015, 5: 17484.

[21] A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar. Generation and near-field imaging of Airy surface plasmons. Phys. Rev. Lett., 2011, 107: 116802.

[22] E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, E. Hasman. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 2016, 352: 1202-1206.

[23] D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, T. Zhang. Real-time electro-optical tunable hyperlens under subwavelength scale. IEEE Photon. J., 2018, 10: 4600109.

[24] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 2014, 13: 139-150.

[25] Y. Yang, W. Wang, P. Moitra, , D. P. Briggs, J. Valentine. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 2014, 14: 1394-1399.

[26] X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, S. Wen. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt. Express, 2014, 22: 17207-17215.

[27] S. Yu, L. Li, N. Kou. Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces. Opt. Mater. Express, 2017, 7: 3312-3321.

[28] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 2012, 12: 4932-4936.

[29] H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, W. Lu. High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces. Opt. Mater. Express, 2018, 8: 1940-1950.

[30] J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, N. Liu. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv., 2018, 4: eaar6768.

[31] H. Dong, F. Wang, R. Liang, Z. Wei, H. Meng, L.-H. Jiang, H. Cen, L. Wang, S. Qin, C. Wang. Visible-wavelength metalenses for diffraction-limited focusing of double polarization and vortex beams. Opt. Mater. Express, 2017, 7: 4029-4037.

[32] M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, F. Capasso. Polarization-insensitive metalenses at visible wavelengths. Nano Lett., 2016, 16: 7229-7234.

[33] M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, N. M. Litchinitser. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett., 2015, 15: 6261-6266.

[34] H. Yang, G. Li, G. Cao, Z. Zhao, J. Chen, K. Ou, X. Chen, W. Lu. Broadband polarization resolving based on dielectric metalenses in the near-infrared. Opt. Express, 2018, 26: 5632-5643.

[35] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 2013, 4: 2807.

[36] S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, D. R. Smith. Infrared metamaterial phase holograms. Nat. Mater., 2012, 11: 450-454.

[37] G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 2015, 10: 308-312.

[38] X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335: 427.

[39] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337.

[40] X. Chen, Y. Zhang, L. Huang, S. Zhang. Ultrathin metasurface laser beam shaper. Adv. Opt. Mater., 2014, 2: 978-982.

[41] F. Shi, M. Qiu, L. Zhang, E. Y. Lam, D. Y. Lei. Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy. ACS Photon., 2018, 5: 1676-1684.

[42] J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, D. Zhang. Plasmonic holographic metasurfaces for generation of vector optical beams. IEEE Photon. J., 2017, 9: 4600108.

[43] X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, L. Chen. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photon. Rev., 2019, 13: 1800081.

[44] J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, S. Chen. Multiple-beam interference-enabled broadband metamaterial wave plates. Phys. Rev. Appl., 2019, 11: 044042.

[45] W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, T. Zentgraf. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 2016, 7: 11930.

[46] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190-1194.

[47] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, D. P. Tsai. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 2018, 13: 227-232.

[48] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 2018, 13: 220-226.

[49] B. Yu, J. Wen, X. Chen, D. Zhang. An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit. Appl. Phys. Express., 2019, 12: 092003.

[50] Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, S. Zhuang. Broadband achromatic metalens in terahertz regime. Sci. Bull., 2019, 64: 1525-1531.

[51] AbdollahramezaniS.HemmatyarO.TaghinejadH.KrasnokA.KiarashinejadY.ZandehshahvarM.AluA.AdibiA., “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

[52] M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics., 2017, 11: 465-476.

[53] K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, H. Liu. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting. Laser Photon. Rev., 2019, 13: 1800289.

[54] O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, A. Adibi. Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach. Nanoscale, 2019, 11: 21266-21274.

[55] E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, B. Lee. Compact generation of Airy beams with c-aperture metasurface. Adv. Opt. Mater., 2017, 5: 1900493.

[56] Z. Li, H. Cheng, Z. Liu, S. Chen, J. Tian. Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces. Adv. Opt. Mater., 2016, 4: 1230-1235.

[57] W. Hao, M. Deng, S. Chen, L. Chen. High-efficiency generation of Airy beams with Huygens’ metasurface. Phys. Rev. Appl., 2019, 11: 054012.

[58] J. Ding, S. An, B. Zheng, H. Zhang. Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths. Adv. Opt. Mater., 2017, 5: 1700079.

[59] H. Li, W. Hao, X. Yin, S. Chen, L. Chen. Broadband generation of Airy beams with hyperbolic metamaterials. Adv. Opt. Mater., 2019, 7: 1900493.

[60] Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, X. Luo. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface. Adv. Opt. Mater., 2019, 7: 1900503.

[61] K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, W. Lu. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 2018, 10: 19154-19161.

[62] Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, T. Xu. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett., 2019, 19: 1158-1165.

[63] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 2015, 10: 937-943.

[64] W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, F. Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 2019, 10: 355.

[65] M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, J. Petschulat. Imaging performance of polarization-insensitive metalenses. ACS Photon., 2019, 6: 1493-1499.

[66] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3: 628-633.

[67] Z. H. Zhu, Z. H. Han, S. I. Bozhevolnyi. Wide-bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas. Appl. Phys. A, 2012, 110: 71-75.

[68] MontA.AlùA.ToscanoA.BilottiF., “Homogenization of all-dielectric metasurfaces: theory and applications,” in Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2019).

[69] A. Monti, A. Alù, A. Toscano, F. Bilotti. Surface impedance modeling of all-dielectric metasurfaces. IEEE Trans. Antennas Propag., 2020, 68: 1799-1811.

[70] H. Wang, J. Du, H. Wang, Y. Lu, P. Wang. Generation of spin-dependent accelerating beam with geometric metasurface. Adv. Opt. Mater., 2019, 7: 1900552.

[71] Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, T. Xu. Autofocusing Airy beams generated by all-dielectric metasurface for visible light. Opt. Express, 2017, 25: 9285-9294.

[72] X. M. Tang, L. Li, T. Li, Q. J. Wang, X. J. Zhang, S. N. Zhu, Y. Y. Zhu. Converting surface plasmon to spatial Airy beam by graded grating on metal surface. Opt. Lett., 2013, 38: 1733-1735.

Binbin Yu, Jing Wen, Lei Chen, Leihong Zhang, Yulong Fan, Bo Dai, Saima Kanwal, Dangyuan Lei, Dawei Zhang. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces[J]. Photonics Research, 2020, 8(7): 07001148.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!