Frontiers of Optoelectronics, 2015, 8 (3): 252, 网络出版: 2016-01-06  

Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents

Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents
作者单位
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology,Wuhan 430070,
2 Wuhan National Laboratory for Optoelectronics, Huazhong Univesity of Science and Technology, Wuhan 430074, China
引用该论文

Cheng ZHANG, Jie ZHONG, Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Frontiers of Optoelectronics, 2015, 8(3): 252.

Cheng ZHANG, Jie ZHONG, Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Frontiers of Optoelectronics, 2015, 8(3): 252.

参考文献

[1] Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T. Enhanced conversion efficiencies of Cu2ZnSnS4- based thin film solar cells by using preferential etching technique. Applied Physics Express, 2008, 1(4): 041201

[2] Schubert B A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock H W. Cu2ZnSnS4 thin film solar cells by fast coevaporation. Progress in Photovoltaics: Research and Applications, 2011, 19(1): 93–96

[3] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7): doi: 10.1002/aenm.201301465

[4] Zhang H, Hu B, Sun L, Hovden R, Wise F W, Muller D A, Robinson R D. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Letters, 2011, 11 (12): 5356–5361

[5] Kamoun N, Bouzouita H, Rezig B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515(15): 5949–5952

[6] Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H. Cu2ZnSn(S,Se)4 kesterite solar cell with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials and Solar Cells, 2014, 124: 55– 60

[7] Vigil-Galán O, Courel M, Espindola-Rodriguez M, Izquierdo-Roca V, Saucedo E, Fairbrother A. Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method. Journal of Renewable and Sustainable Energy, 2013, 5(5): 053137

[8] Yeh M Y, Lee C C, Wuu D S. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol – gel spin-coated deposition. Journal of Sol-Gel Science and Technology, 2009, 52(1): 65–68

[9] Jiang M, Lan F, Yan X, Li G. Cu2ZnSn(S1-xSex)4thin film solar cells prepared by water-based solution process. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(3): 223–227

[10] Jiang M, Li Y, Dhakal R, Thapaliya P, Mastro M, Caldwell J, Kub F, Yan X. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method. Journal of Photonics for Energy, 2011, 1(1): 019501

[11] Tian Q, Huang L, Zhao W, Yang Y, Wang G, Pan D. Metal sulfide precursor aqueous solutions for fabrication of Cu2ZnSn(S,Se)4 thin film solar cells. Green Chemistry, 2015, 17(2): 1269–1275

[12] Kishore Kumar Y B, Suresh Babu G, Uday Bhaskar P, Sundara Raja V. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2009, 93(8): 1230–1237

[13] Zhong J, Xia Z, Zhang C, Li B, Liu X, Cheng Y B, Tang J. One-pot synthesis of self-stabilized aqueous nanoinks for Cu2ZnSn(S,Se)4 solar cells. Chemistry of Materials, 2014, 26(11): 3573–3578

[14] Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy & Environmental Science, 2012, 5(1): 5340–5345

[15] Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. Efficient Cu2ZnSnS4 solar cells spray coated from a hydro-alcoholic colloid synthesized by instantaneous reaction. RSC Advances, 2014, 4(28): 14655– 14662

[16] Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. 8.6% efficient CZTSSe solar cells sprayed from water – ethanol CZTS colloidal solutions. Journal of Physical Chemistry Letters, 2014, 5(21): 3763– 3767

[17] Li Z, Ho J C W, Lee K K, Zeng X, Zhang T, Wong L H, Lam Y M. Environmentally friendly solution route to kesterite Cu2ZnSn(S,Se)4 thin films for solar cell applications. RSC Advances, 2014, 4(51): 26888–26894

[18] Chen G, Yuan C, Liu J, Huang Z, Chen S, Liu W, Jiang G, Zhu C. Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell. Journal of Power Sources, 2015, 276: 145–152

[19] van Embden J, Chesman A S, Della Gaspera E, Duffy N W, Watkins S E, Jasieniak J J. Cu ZnSnS4xSe4(1 – x) solar cells from polar nanocrystal inks. Journal of the American Chemical Society, 2014, 136(14): 5237–5240

[20] Kang C C, Chen H F, Yu T C, Lin T C. Aqueous synthesis of wurtzite Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 24– 26

[21] Kush P, Ujjain S K, Mehra N C, Jha P, Sharma R K, Deka S. Development and properties of surfactant-free water-dispersible Cu2ZnSnS4 nanocrystals: a material for low-cost photovoltaics. Chemphyschem: a European journal of Chemical Physics and Physical Chemistry, 2013, 14(12): 2793–2799

[22] Liu W, Guo B, Mak C, Li A, Wu X, Zhang F. Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films, 2013, 535: 39–43

[23] Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm, 2012, 14 (11): 3847–3850

[24] Hsu K C, Liao J D, Chao L M, Fu Y S. Fabrication and characterization of Cu2ZnSnS4 powders by a hydrothermal method. Japanese Journal of Applied Physics, 2013, 52(6R): 061202

[25] Camara S M, Wang L, Zhang X. Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology, 2013, 24(49): 495401

[26] Jiang H, Dai P, Feng Z, Fan W, Zhan J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. Journal of Materials Chemistry, 2012, 22(15): 7502–7506

[27] Tiong V T, Bell J, Wang H. One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals- a hydrothermal approach. Beilstein Journal of Nanotechnology, 2014, 5: 438–446

[28] Tiong V T, Zhang Y, Bell J, Wang H. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: the effect of the sulphur precursor. CrystEngComm, 2014, 16(20): 4306–4313

[29] Zhao Y, Zhou W H, Jiao J, Zhou Z J, Wu S X. Aqueous synthesis and characterization of hydrophilic Cu2ZnSnS4 nanocrystals. Materials Letters, 2013, 96: 174–176

[30] Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science, 2009, 324(5933): 1417–1420

[31] Kovalenko M V, Bodnarchuk M I, Zaumseil J, Lee J S, Talapin D V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. Journal of the American Chemical Society, 2010, 132(29): 10085–10092

[32] Jiang C, Lee J S, Talapin D V. Soluble precursors for CuInSe2, CuIn1 – xGaxSe2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. Journal of the American Chemical Society, 2012, 134(11): 5010–5013

[33] Zhou H, Duan H S, Yang W, Chen Q, Hsu C J, Hsu W C, Chen C C, Yang Y. Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy & Environmental Science, 2014, 7(3): 998–1005

[34] Su Z, Sun K, Han Z, Cui H, Liu F, Lai Y, Li J, Hao X, Liu Y, Green M A. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(2): 500–509

[35] Kim S, Kim J. Effect of selenization on sprayed Cu2ZnSnS4 thin film solar cell. Thin Solid Films, 2013, 547: 178–180

[36] Scragg J J, Berg D M, Dale P J A. 3.2% efficient Kesterite device from electrodeposited stacked elemental layers. Journal of Electroanalytical Chemistry, 2010, 646(1–2): 52–59

[37] Araki H, Kubo Y, Mikaduki A, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Oishi K, Takeuchi A. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 996–999

[38] Scragg J J, Dale P J, Peter L M. Towards sustainable materials for solar energy conversion: preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochemistry Communications, 2008, 10(4): 639–642

[39] Scragg J J, Dale P J, Peter L M. Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealin88g route. Thin Solid Films, 2009, 517(7): 2481–2484

[40] Iljina J, Zhang R, Ganchev M, Raadik T, Volobujeva O, Altosaar M, Traksmaa R, Mellikov E. Formation of Cu2ZnSnS4 absorber layers for solar cells by electrodeposition-annealing route. Thin Solid Films, 2013, 537: 85–89

[41] Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, K tschau I, Schock H W, Schurr R, H lzing A, Jost S, Hock R, Vo T, Schulze J, Kirbs A. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 2009, 517 (7): 2511–2514

[42] Wang Y, Ma J, Liu P, Chen Y, Li R, Gu J, Lu J, Yang S, Gao X. Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route. Materials Letters, 2012, 77: 13–16

[43] Pawar S M, Pawar B S, Moholkar A V, Choi D S, Yun J H, Moon J H, Kolekar S S, Kim J H. Single step electrosynthesis of Cu2ZnSnS4 (CZTS) thin films for solar cell application. Electrochimica Acta, 2010, 55(12): 4057–4061

[44] Schurr R, H lzing A, Jost S, Hock R, Vo T, Schulze J, Kirbs A, Ennaoui A, Lux-Steiner M, Weber A, K tschau I, Schock H W. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from coelectroplated Cu – Zn – Sn precursors. Thin Solid Films, 2009, 517 (7): 2465–2468

[45] Chan C P, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Solar Energy Materials and Solar Cells, 2010, 94(2): 207–211

[46] Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction echnique: characterization and application. Electrochimica Acta, 2012, 66: 216–221

[47] Mali S S, Shinde P S, Betty C A, Bhosale P N, Oh Y W, Patil P S. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, 2012, 73(6): 735–740

[48] Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H. Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Materials Research Bulletin, 2012, 47(2): 302–307

[49] Shinde N M, Deshmukh P R, Patil S V, Lokhande C D. Aqueous chemical growth of Cu2ZnSnS4 (CZTS) thin films: air annealing and photoelectrochemical properties. Materials Research Bulletin, 2013, 48(5): 1760–1766

[50] Patel K, Shah D V, Kheraj V. Influence of deposition parameters and annealing on Cu2ZnSnS4 thin films grown by SILAR. Journal of Alloys and Compounds, 2015, 622: 942–947

[51] Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y. Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Applied Surface Science, 2012, 258(19): 7678– 7682

[52] Gao C, Shen H, Jiang F, Guan H. Preparation of Cu2ZnSnS4 film by sulfurizing solution deposited precursors. Applied Surface Science, 2012, 261: 189–192

[53] Wangperawong A, King J S, Herron S M, Tran B P, PanganOkimoto K, Bent S F. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers. Thin Solid Films, 2011, 519(8): 2488–2492

[54] Moriya K, Tanaka K, Uchiki H. Characterization of Cu2ZnSnS4thin films prepared by photo-chemical deposition. Japanese Journal of Applied Physics, 2005, 44(1B): 715–717

[55] Shinde N M, Lokhande C D, Kim J H, Moon J H. Low cost and large area novel chemical synthesis of Cu2ZnSnS4 (CZTS) thin films. Journal of Photochemistry and Photobiology A Chemistry, 2012, 235: 14–20

[56] Chen S, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials, 2013, 25(11): 1522– 1539

[57] Hergert F, Hock R. Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se) starting from binary chalcogenides. Thin Solid Films, 2007, 515(15): 5953–5956

[58] Shin S W, Pawar S M, Park C Y, Yun J H, Moon J H, Kim J H, Lee J Y. Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Solar Energy Materials and Solar Cells, 2011, 95(12): 3202–3206

[59] Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 2011, 95(6): 1421–1436

[60] Polizzotti A, Repins I L, Noufi R, Wei S H, Mitzi D B. The state and future prospects of kesterite photovoltaics. Energy & Environmental Science, 2013, 6(11): 3171–3182

[61] Vigil-Galán O, Courel M, Andrade-Arvizu J A, Sánchez Y, Espíndola-Rodríguez M, Saucedo E, Seuret-Jiménez D, Titsworth M. Route towards low cost-high efficiency second generation solar cells: current status and perspectives. Journal of Materials Science Materials in Electronics, 2015, 26(8): 5562–5573

[62] Chen S, Gong X G, Walsh A, Wei S H. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters, 2010, 96(2): 021902

[63] Vigil-Galán O, Espíndola-Rodríguez M, Courel M, Fontané X, Sylla D, Izquierdo-Roca V, Fairbrother A, Saucedo E, Pérez-Rodríguez A. Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 117: 246– 250

[64] Wen Q, Li Y, Yan J, Wang C. Crystal size-controlled growth of Cu2ZnSnS4 films by optimizing the Na doping concentration. Materials Letters, 2015, 140: 16–19

[65] Prabhakar T, Jampana N. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2011, 95(3): 1001–1004

[66] Tong Z, Yan C, Su Z, Zeng F, Yang J, Li Y, Jiang L, Lai Y, Liu F. Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Applied Physics Letters, 2014, 105(22): 223903

[67] Johnson M, Baryshev S V, Thimsen E, Manno M, Zhang X, Veryovkin I V, Leighton C, Aydil E S. Alkali-metal-enhanced grain growth in Cu2ZnSnS4thin films. Energy & Environmental Science, 2014, 7(6): 1931–1938

[68] Zhou H, Song T B, Hsu W C, Luo S, Ye S, Duan H S, Hsu C J, Yang W, Yang Y. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. Journal of the American Chemical Society, 2013, 135(43): 15998– 16001

[69] Nagaoka A, Miyake H, Taniyama T, Kakimoto K, Nose Y, Scarpulla M A, Yoshino K. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Applied Physics Letters, 2014, 104(15): 152101

[70] Todorov T, Mitzi D B. Direct liquid coating of chalcopyrite lightabsorbing layers for photovoltaic devices. European Journal of Inorganic Chemistry, 2010, 2010(1): 17–28

[71] Zhong J, Xia Z, Luo M, Zhao J, Chen J, Wang L, Liu X, Xue D J, Cheng Y B, Song H, Tang J. Sulfurization induced surface constitution and its correlation to the performance of solutionprocessed Cu2ZnSn(S,Se)4 solar cells. Scientific Reports, 2014, 4: 6288–6296

[72] Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411

[73] Shin B, Bojarczuk N A, Guha S. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Applied Physics Letters, 2013, 102(9): 091907

[74] Cui H, Lee C Y, Li W, Liu X, Wen X, Hao X. Improving efficiency of evaporated Cu2ZnSnS4 thin film solar cells by a thin Ag intermediate layer between absorber and back contact. International Journal of Photoenergy, 2015, 170507

[75] Liu X, Cui H, Li W, Song N, Liu F, Conibeer G, Hao X. Improving Cu2ZnSnS4 (CZTS) solar cell performance by an ultrathin ZnO intermediate layer between CZTS absorber and Mo back contact. Physica Status Solidi (RRL)- Rapid Research Letters, 2014, 8(12): 966–970

[76] Shin B, Gunawan O, Zhu Y, Bojarczuk N A, Chey S J, Guha S. Thin film solar cell with 8.4% power conversion efficiency using an earthabundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 72–76

[77] Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A. Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/ Mo interface. Applied Physics Letters, 2014, 104(5): 051105

Cheng ZHANG, Jie ZHONG, Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Frontiers of Optoelectronics, 2015, 8(3): 252. Cheng ZHANG, Jie ZHONG, Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Frontiers of Optoelectronics, 2015, 8(3): 252.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!