Photonics Research, 2019, 7 (10): 10001142, Published Online: Sep. 18, 2019  

Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures Download: 744次

Author Affiliations
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Copy Citation Text

Qian Zhao, Zhong-Jian Yang, Jun He. Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures[J]. Photonics Research, 2019, 7(10): 10001142.

References

[1] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, B. Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 2016, 354: aag2472.

[2] M. Decker, I. Staude. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt., 2016, 18: 103001.

[3] Z.-J. Yang, R. Jiang, X. Zhuo, Y.-M. Xie, J. Wang, H.-Q. Lin. Dielectric nanoresonators for light manipulation. Phys. Rep., 2017, 701: 1-50.

[4] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 2016, 11: 23-36.

[5] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 2017, 358: eaam8100.

[6] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 2017, 4: 625-632.

[7] X. Zhu, W. Yan, U. Levy, N. A. Mortensen, A. Kristensen. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv., 2017, 3: e1602487.

[8] W. Liu. Generalized magnetic mirrors. Phys. Rev. Lett., 2017, 119: 123902.

[9] R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, A. I. Kuznetsov. Magnetic and electric hotspots with silicon nanodimers. Nano Lett., 2015, 15: 2137-2142.

[10] M. Caldarola, P. Albella, E. Cortes, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, S. A. Maier. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun., 2015, 6: 7915.

[11] Y. Yang, V. A. Zenin, S. I. Bozhevolnyi. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics, 2018, 5: 1960-1966.

[12] U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, B. N. Chichkov. Electromagnetic resonances of silicon nanoparticle dimers in the visible. ACS Photonics, 2015, 2: 913-920.

[13] J. van de Groep, T. Coenen, S. A. Mann, A. Polman. Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica, 2016, 3: 93-99.

[14] Y. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 2014, 5: 5753.

[15] J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang. Directional Fano resonance in a silicon nano sphere dimer. ACS Nano, 2015, 9: 2968-2980.

[16] A. E. Miroshnichenko, Y. S. Kivshar. Fano resonances in all-dielectric oligomers. Nano Lett., 2012, 12: 6459-6463.

[17] H. Wang, P. Liu, Y. Ke, Y. Su, L. Zhang, N. Xu, S. Deng, H. Chen. Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. ACS Nano, 2015, 9: 436-448.

[18] R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D. N. Neshev, Y. S. Kivshar. Multipolar coupling in hybrid metal dielectric metasurfaces. ACS Photonics, 2016, 3: 349-353.

[19] T. Feng, Y. Xu, W. Zhang, A. E. Miroshnichenko. Ideal magnetic dipole scattering. Phys. Rev. Lett., 2017, 118: 173901.

[20] Y.-H. Deng, Z.-J. Yang, J. He. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. Opt. Express, 2018, 26: 31116-31128.

[21] Y. Yang, O. D. Miller, T. Christensen, J. D. Joannopoulos, M. Soljačić. Low-loss plasmonic dielectric nanoresonators. Nano Lett., 2017, 17: 3238-3245.

[22] Q. Zhao, Z. J. Yang, J. He. Fano resonances in heterogeneous dimers of silicon and gold nanospheres. Front. Phys., 2018, 13: 137801.

[23] H. Wang, Y. Ke, N. Xu, R. Zhan, Z. Zheng, J. Wen, J. Yan, P. Liu, J. Chen, J. She, Y. Zhang, F. Liu, H. Chen, S. Deng. Resonance coupling in silicon nanosphere-J-aggregate heterostructures. Nano Lett., 2016, 16: 6886-6895.

[24] J. Yan, C. Ma, P. Liu, C. Wang, G. Yang. Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove. Light Sci. Appl., 2017, 6: e16197.

[25] S. Lepeshov, M. Wang, A. Krasnok, O. Kotov, T. Zhang, H. Liu, T. Jiang, B. Korgel, M. Terrones, Y. Zheng, A. Alù. Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures. ACS Appl. Mater. Inter., 2018, 10: 16690-16697.

[26] S.-D. Liu, J.-L. Fan, W.-J. Wang, J.-D. Chen, Z.-H. Chen. Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures. ACS Photonics, 2018, 5: 1628-1639.

[27] Q. Ruan, N. Li, H. Yin, X. Cui, J. Wang, H.-Q. Lin. Coupling between the Mie resonances of Cu2O nanospheres and the excitons of dye aggregates. ACS Photonics, 2018, 5: 3838-3848.

[28] A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar. All-dielectric optical nanoantennas. Opt. Express, 2012, 20: 20599-20604.

[29] M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suarez-Lacalle, S. Mackowski, J. Aizpurua. Dielectric antennas—a suitable platform for controlling magnetic dipolar emission. Opt. Express, 2012, 20: 13636-13650.

[30] P. Albella, M. Ameen Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, J. Aizpurua. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J. Phys. Chem. C, 2013, 117: 13573-13584.

[31] D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. García Parajó, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, S. Bidault. Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas. Phys. Rev. Appl., 2016, 6: 064016.

[32] R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García Parajó, S. Bidault, J. Wenger, N. Bonod. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett., 2016, 16: 5143-5151.

[33] A. F. Cihan, A. G. Curto, S. Raza, P. G. Kik, M. L. Brongersma. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nat. Photonics, 2018, 12: 284-290.

[34] W. Zhang, A. O. Govorov, G. W. Bryant. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett., 2006, 97: 146804.

[35] R. D. Artuso, G. W. Bryantt. Optical response of strongly coupled quantum dot–Metal nanoparticle systems: double peaked Fano structure and bistability. Nano Lett., 2008, 8: 2106-2111.

[36] R. D. Artuso, G. W. Bryant. Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B, 2010, 82: 195419.

[37] A. Manjavacas, F. J. García de Abajo, P. Nordlander. Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett., 2011, 11: 2318-2323.

[38] W. Zhang, A. O. Govorov. Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity. Phys. Rev. B, 2011, 84: 081405.

[39] P. Torma, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys., 2015, 78: 013901.

[40] G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Kall, T. Shegai. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 2015, 114: 157401.

[41] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 2016, 535: 127-130.

[42] R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, X.-H. Wang. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 2017, 118: 237401.

[43] D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, T. Shegai. Novel nanostructures and materials for strong light matter interactions. ACS Photonics, 2017, 5: 24-42.

[44] V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, S. A. Maier. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 2011, 111: 3888-3912.

[45] P. Biagioni, J.-S. Huang, B. Hecht. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys., 2012, 75: 024402.

[46] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010, 329: 930-933.

[47] C. M. Dodson, R. Zia. Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: calculated emission rates and oscillator strengths. Phys. Rev. B, 2012, 86: 125102.

[48] T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia. Quantifying the magnetic nature of light emission. Nat. Commun., 2012, 3: 979.

[49] M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, L. Novotny. Excitation of magnetic dipole transitions at optical frequencies. Phys. Rev. Lett., 2015, 114: 163903.

[50] T. Feng, Y. Xu, Z. Liang, W. Zhang. All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt. Lett., 2016, 41: 5011-5014.

[51] J. Li, N. Verellen, P. Van Dorpe. Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photonics, 2017, 4: 1893-1898.

[52] M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maître, L. Aigouy, T. Gacoin, N. Bonod, M. F. García Parajó, S. Bidault, M. Mivelle. Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett., 2018, 18: 3481-3487.

[53] T. Feng, W. Zhang, Z. Liang, Y. Xu, A. E. Miroshnichenko. Isotropic magnetic Purcell effect. ACS Photonics, 2017, 5: 678-683.

[54] S. M. Hein, H. Giessen. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys. Rev. Lett., 2013, 111: 026803.

[55] M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, M. F. Garcia-Parajo. Strong modification of magnetic dipole emission through diabolo nanoantennas. ACS Photonics, 2015, 2: 1071-1076.

[56] K. Yao, Y. Liu. Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality. ACS Photonics, 2016, 3: 953-963.

[57] D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, A. Alù. Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev., 2017, 11: 1600268.

[58] YarivA., Quantum Electronics (Wiley, 1975).

[59] N. R. Brewer, Z. N. Buckholtz, Z. J. Simmons, E. A. Mueller, D. D. Yavuz. Coherent magnetic response at optical frequencies using atomic transitions. Phys. Rev. X, 2017, 7: 011005.

[60] AllenL.EberlyJ. H., Optical Resonance and Two-Level Atoms (Courier Corporation, 1987).

[61] BohrenC. F.HuffmanD. R., Absorption and Scattering of Light by Small Particles (Wiley, 2008).

[62] A. Garcia-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J. J. Sáenz. Strong magnetic response of submicron silicon particles in the infrared. Opt. Express, 2011, 19: 4815-4826.

[63] PalikE. D., Handbook of Optical Constants of Solids, PalikE. D., ed., Academic Press Handbook Series (Academic, 1985).

[64] R. M. Macfarlane, R. M. Shelby. Homogeneous line broadening of optical transitions of ions and molecules in glasses. J. Lumin., 1987, 36: 179-207.

[65] F. Konz, Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, R. L. Hutcheson, R. M. Macfarlane. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5. Phys. Rev. B, 2003, 68: 085109.

[66] H. Chew. Transition rates of atoms near spherical surfaces. J. Chem. Phys., 1998, 87: 1355-1360.

Qian Zhao, Zhong-Jian Yang, Jun He. Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures[J]. Photonics Research, 2019, 7(10): 10001142.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!