Frontiers of Optoelectronics, 2018, 11 (4): 333–347, 网络出版: 2019-01-10  

Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy

Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy
作者单位
1 Henan Provincial Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
2 School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
引用该论文

Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Frontiers of Optoelectronics, 2018, 11(4): 333–347.

Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Frontiers of Optoelectronics, 2018, 11(4): 333–347.

参考文献

[1] Holdren J P. Energy and sustainability. Science, 2007, 315(5813): 737

[2] Lianos P. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 2017, 210: 235–254

[3] Li D, Shi J, Li C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: a mini review. Small, 2018, 14(23): 1704179

[4] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

[5] Klotz D, Grave D A, Dotan H, Rothschild A. Empirical analysis of the photoelectrochemical impedance response of hematite photoanodes for water photo-oxidation. Journal of Physical Chemistry Letters, 2018, 9(6): 1466–1472

[6] Wang M, Chen P, Humphry-Baker R, Zakeeruddin S M, Gratzel M. The influence of charge transport and recombination on the performance of dye-sensitized solar cells. ChemPhysChem, 2009, 10(1): 290–299

[7] Klotz D, Ellis D S, Dotan H, Rothschild A. Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS. Physical Chemistry Chemical Physics, 2016, 18(34): 23438–23457

[8] Tsyganok A, Klotz D, Malviya K D, Rothschild A, Grave D A. Different roles of Fe1 – xNixOOH co-catalyst on hematite (α-Fe2O3) photoanodes with different dopants. ACS Catalysis, 2018, 8(4): 2754–2759

[9] Berera R, van Grondelle R, Kennis J T. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis Research, 2009, 101(2-3): 105–118

[10] Pei G X, Wijten J H J, Weckhuysen B M. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2018, 20(15): 9806–9811

[11] Wang M, Alemu G, Shen Y. Scanning probe microscopy investigation of metal oxides nanocrystalline. In: Current Microscopy Contributions to Advances in Science and Technology, Chapter 3, 2012, 1377–1386

[12] Esposito D V, Baxter J B, John J, Lewis N S, Moffat T P, Ogitsu T, O’Neil G D, Pham T A, Talin A A, Velazquez J M, Wood B C. Methods of photoelectrode characterization with high spatial and temporal resolution. Energy & Environmental Science, 2015, 8(10): 2863–2885

[13] Cen J, Wu Q, Liu M, Orlov A. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: a review on recent progress. Green Energy & Environment, 2017, 2(2): 100–111

[14] Miki T, Yanagi H. Scanning probe microscopic characterization of surface-modified n-TiO2 single-crystal electrodes. Langmuir, 1998, 14(12): 3405–3410

[15] Wierzbiński E, Szklarczyk M. Photoelectrochemical and in situ atomic force microscopy studies of films derived from omethoxyaniline solution on gallium arsenide (100) photoelectrode. Thin Solid Films, 2003, 424(2): 191–200

[16] Toma F M, Cooper J K, Kunzelmann V, McDowell M T, Yu J, Larson D M, Borys N J, Abelyan C, Beeman J W, Yu K M, Yang J, Chen L, Shaner M R, Spurgeon J, Houle F A, Persson K A, Sharp I D. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 2016, 7: 12012

[17] Economou N J, Mubeen S, Buratto S K, McFarland E W. Investigation of arrays of photosynthetically active heterostructures using conductive probe atomic force microscopy. Nano Letters, 2014, 14(6): 3328–3334

[18] Nakamura R, Nakato Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. Journal of the American Chemical Society, 2004, 126(4): 1290–1298

[19] Zandi O, Hamann T W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nature Chemistry, 2016, 8(8): 778–783

[20] McKelvey K, Nadappuram B P, Actis P, Takahashi Y, Korchev Y E, Matsue T, Robinson C, Unwin P R. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM). Analytical Chemistry, 2013, 85(15): 7519–7526

[21] Zampardi G, Klink S, Kuznetsov V, Erichsen T, Maljusch A, La Mantia F, Schuhmann W, Ventosa E. Combined AFM/SECM investigation of the solid electrolyte interphase in Li-ion batteries. Chemelectrochem, 2015, 2(10): 1607–1611

[22] Takahashi Y, Shevchuk A I, Novak P, Murakami Y, Shiku H, Korchev Y E, Matsue T. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. Journal of the American Chemical Society, 2010, 132(29): 10118–10126

[23] Baranski A, Diakowski P. Application of AC impedance techniques to scanning electrochemical microscopy. Journal of Solid State Electrochemistry, 2004, 8(10): 683–692

[24] Mirkin M, Fan F, Bard A. Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. Journal of Electroanalytical Chemistry, 1992, 328(1-2): 47–62

[25] Bard A, Fan F, Kwak J, Lev O. Scanning electrochemical microscopy: introduction and principles. Analytical Chemistry, 1989, 61(3): 132–138

[26] Engstrom R, Pharr C. Scanning electrochemical microscopy. Analytical Chemistry, 1989, 61(19): 1099A–1104A

[27] Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chemical Reviews, 2016, 116(22): 13234–13278

[28] Rodriguez-Lopez J, Alpuche-Aviles M A, Bard A J. Selective insulation with poly(tetrafluoroethylene) of substrate electrodes for electrochemical background reduction in scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(5): 1813–1818

[29] Rodriguez-Lopez J.Surface interrogation mode of scanning electrochemical microscopy (SI-SECM): an approach to the study of adsorption and (electro)catalysis at electrodes. Electroanalytical Chemistry: A Series of Advances, 2012, 24: 287–341

[30] Zhang B, Xu X, Zhang X, Huang D, Li S, Zhang Y, Zhan F, Deng M, He Y, Chen W, Shen Y, Wang M. Investigation of dye regeneration kinetics in sensitized solar cells by scanning electrochemical microscopy. ChemPhysChem, 2014, 15(6): 1182–1189

[31] Weng Y, Hsiao K. Composition optimization of ZnO-based photocatalyst arrays by scanning electrochemical microscopy and the characterization of efficient photocatalysts. International Journal of Hydrogen Energy, 2015, 40(8): 3238–3248

[32] Li F, Ciani I, Bertoncello P, Unwin P R, Zhao J J, Bradbury C R, Fermin D J. Scanning electrochemical microscopy of redoxmediated hydrogen evolution catalyzed by two-dimensional assemblies of palladium nanoparticles. Journal of Physical Chemistry C, 2008, 112(26): 9686–9694

[33] Zhang B, Yuan H, Zhang X, Huang D, Li S, Wang M, Shen Y. Investigation of regeneration kinetics in quantum-dots-sensitized solar cells with scanning electrochemical microscopy. ACS Applied Materials & Interfaces, 2014, 6(23): 20913–20918

[34] Alemu G, Zhang B, Li J, Xu X, Cui J, Shen Y, Wang M. Investigation of dye-regeneration kinetics at dye-sensitized p-type CuCrO2 film/electrolytes interface with scanning electrochemical microscopy. Nano, 2014, 9(5): 1440008

[35] Martin C, Bozic-Weber B, Constable E, Glatzel T, Housecroft C, Wright I. Development of scanning electrochemical microscopy (SECM) techniques for the optimization of dye sensitized solar cells. Electrochimica Acta, 2014, 119: 86–91

[36] Schmidt I, Plettenberg I, Kimmich D, Ellis H, Witt J, Dosche C, Wittstock G. Spatially resolved analysis of screen printed photoanodes of dye-sensitized solar cells by scanning electrochemical microscopy. Electrochimica Acta, 2016, 222: 735–746

[37] Shen Y, Trauble M, Wittstock G. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(3): 750–759

[38] Li H, Du M, Mleczko M J, Koh A L, Nishi Y, Pop E, Bard A J, Zheng X. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. Journal of the American Chemical Society, 2016, 138(15): 5123–5129

[39] Jung C, Sanchez-Sanchez CM, Lin C L, Rodriguez-Lopez J, Bard A J. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy. Analytical Chemistry, 2009, 81(16): 7003–7008

[40] Sanchez-Sanchez C M, Rodriguez-Lopez J, Bard A J. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Analytical Chemistry, 2008, 80(9): 3254–3260

[41] Ventosa E, Schuhmann W. Scanning electrochemical microscopy of Li-ion batteries. Physical Chemistry Chemical Physics, 2015, 17(43): 28441–28450

[42] Xu F, Beak B, Jung C. In situ electrochemical studies for Li + ions dissociation from the LiCoO2 electrode by the substrate-generation/tip-collection mode in SECM. Journal of Solid State Electrochemistry, 2012, 16(1): 305–311

[43] Bülter H, Peters F, Schwenzel J, Wittstock G. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angewandte Chemie, 2014, 53(39): 10531–10535

[44] Sumboja A, Tefashe U, Wittstock G, Lee P S. Investigation of charge transfer kinetics of polyaniline supercapacitor electrodes by scanning electrochemical microscopy. Advanced Materials Interfaces, 2015, 2(1): 1400154

[45] Zhang Q, Ye Z, Zhu Z, Liu X, Zhang J, Cao F. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM. Corrosion Science, 2018, 139: 403–409

[46] Lee J, Ye H, Pan S, Bard A J. Screening of photocatalysts by scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(19): 7445–7450

[47] Sreekanth N, Phani K L. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chemical Communications (Cambridge, England), 2014, 50(76): 11143–11146

[48] Rodriguez-Lopez J, Bard A J. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum. Journal of the American Chemical Society, 2010, 132(14): 5121–5129

[49] Fernandez J L, White JM, Sun Y, Tang W, Henkelman G, Bard A J. Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods. Langmuir, 2006, 22(25): 10426–10431

[50] Jantz D, Leonard K. Characterizing electrocatalysts with scanning electrochemical microscopy. Industrial & Engineering Chemistry Research, 2018, 57(22): 7431–7440

[51] Li Y, Ning X, Ma Q, Qin D, Lu X. Recent advances in electrochemistry by scanning electrochemical microscopy. Trends in Analytical Chemistry, 2016, 80: 242–254

[52] Rincon M E, Trujillo M E, Avalos J, Casillas N. Photoelectrochemical processes at interfaces of nanostructured TiO2/carbon black composites studied by scanning photoelectrochemical microscopy. Journal of Solid State Electrochemistry, 2007, 11(9): 1287–1294

[53] Bozic B, Figgemeier E. Scanning electrochemical microscopy under illumination: an elegant tool to directly determine the mobility of charge carriers within dye-sensitized nanostructured semiconductors. Chemical Communications (Cambridge, England), 2006, 21(21): 2268–2270

[54] Tefashe U M, Loewenstein T, Miura H, Schlettwein D,Wittstock G. Scanning electrochemical microscope studies of dye regeneration in indoline (D149)-sensitized ZnO photoelectrochemical cells. Journal of Electroanalytical Chemistry, 2010, 650(1): 24–30

[55] Tefashe U M, Rudolph M, Miura H, Schlettwein D, Wittstock G. Photovoltaic characteristics and dye regeneration kinetics in D149-sensitized ZnO with varied dye loading and film thickness. Physical Chemistry Chemical Physics, 2012, 14(20): 7533–7542

[56] Tefashe U M, Nonomura K, Vlachopoulos N, Hagfeldt A,Wittstock G. Effect of cationon dye regeneration kinetics of N719-sensitized TiO2 films in acetonitrile-based and ionic-liquid-based electrolytes investigated by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2012, 116(6): 4316–4323

[57] Shen Y, Nonomura K, Schlettwein D, Zhao C, Wittstock G. Photoelectrochemical kinetics of eosin y-sensitized zinc oxide films investigated by scanning electrochemical microscopy. Chemistry (Weinheim an der Bergstrasse, Germany), 2006, 12(22): 5832–5839

[58] Shen Y, Tefashe U M, Nonomura K, Loewenstein T, Schlettwein D, Wittstock G. Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED. Electrochimica Acta, 2009, 55(2): 458–464

[59] Xu X, Zhang B, Cui J, Xiong D, Shen Y, Chen W, Sun L, Cheng Y, Wang M. Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale, 2013, 5(17): 7963–7969

[60] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

[61] Hsu H, Ji L, Du M, Zhao J, Yu E, Bard A. Optimization of PbI2/MAPbI3 perovskite composites by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2016, 120(35): 19890–19895

[62] Alemu G, Li J, Cui J, Xu X, Zhang B, Cao K, Shen Y, Cheng Y, Wang M. Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9216–9222

[63] Jang J, Lee J, Ye H, Fan F, Bard A. Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. Journal of Physical Chemistry C, 2009, 113(16): 6719–6724

[64] Currao A. Photoelectrochemical water splitting. Chimia, 2007, 61 (12): 815–819

[65] Acar C, Dincer I, Zamfirescu C. A review on selected heterogeneous photocatalysts for hydrogen production. International Journal of Energy Research, 2014, 38(15): 1903–1920

[66] Acar C, Dincer I. A review and evaluation of photoelectrode coating materials and methods for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2016, 41(19): 7950–7959

[67] Shi Q, Murcia-Lopez S, Tang P, Flox C, Morante J, Bian Z,Wang H, Andreu T. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catalysis, 2018, 8(4): 3331–3342

[68] Yang Y, Niu S, Han D, Liu T,Wang G, Li Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Advanced Energy Materials, 2017, 7(19): 1700555

[69] Zhang X, Zhang B, Zuo Z, Wang M, Shen Y. N/Si co-doped oriented single crystalline rutile TiO2 nanorods for photoelectrochemical water splitting. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(18): 10020–10025

[70] Zhang X, Yang H, Zhang B, Shen Y, Wang M. BiOI-TiO2 nanocomposites for photoelectrochemical water splitting. Advanced Materials Interfaces, 2016, 3(1): 1500273

[71] Harrison S, Hayne M. Photoelectrolysis using type-II semiconductor heterojunctions. Scientific Reports, 2017, 7(1): 11638

[72] Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244

[73] Yang J,Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909

[74] Zhang X, Zhang B, Liu S, Kang H, Kong W, Zhang S, Shen Y, Yang B. RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation. Applied Surface Science, 2018, 436: 974–980

[75] Zhang X, Zhang B, Luo Y, Lv X, Shen Y. Phosphate modified N/Si co-doped rutile TiO2 nanorods for photoelectrochemical water oxidation. Applied Surface Science, 2017, 391: 288–294

[76] Zhang X, Zhang B, Huang D, Yuan H, Wang M, Shen Y. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon, 2014, 80: 591–598

[77] Shi W, Zhang X, Brillet J, Huang D, Li M, Wang M, Shen Y. Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 2016, 105: 387–393

[78] Shi W, Zhang X, Li S, Zhang B, Wang M, Shen Y. Carbon coated Cu2O nanowires for photoelectrochemical water splitting with enhanced activity. Applied Surface Science, 2015, 358: 404–411

[79] Zhang X, Zhang B, Cao K, Brillet J, Chen J, Wang M, Shen Y. A perovskite solar cell-TiO2@BiVO4 photoelectrochemical system for direct solar water splitting. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(43): 21630–21636

[80] Chen Y S, Manser J S, Kamat P V. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. Journal of the American Chemical Society, 2015, 137(2): 974–981

[81] Brillet J, Yum J, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Gratzel M, Sivula K. Highly efficient water splitting by a dualabsorber tandem cell. Nature Photonics, 2012, 6(12): 824–828

[82] Park H, Kweon K, Ye H, Paek E, Hwang G, Bard A. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and firstprinciples density-functional calculation. Journal of Physical Chemistry C, 2011, 115(36): 17870–17879

[83] Leonard K, Nam K, Lee H, Kang S, Park H, Bard A. ZnWO4/WO3 composite for improving photoelectrochemical water oxidation. Journal of Physical Chemistry C, 2013, 117(31): 15901–15910

[84] Ye H, Park H, Bard A. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemic al microscopy. Journal of Physical Chemistry C, 2011, 115(25): 12464–12470

[85] Ye H, Lee J, Jang J, Bard A. Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. Journal of Physical Chemistry C, 2010, 114(31): 13322–13328

[86] Lu X, Hu Y, He H. Electron transfer kinetics at interfaces using secm (scanning electrochemical microscopy). In: Sur U K, ed. Recent Trend in Electrochemical Science and Technology. Rijeka: In Tech, 2012, 127–156

[87] Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy of Ni1 – xFexOOH (0

[88] Zhang B, Zhang X, Xiao X, Shen Y. Photoelectrochemical water splitting system–a study of interfacial charge transfer with scanning electrochemical microscopy. ACS Applied Materials & Interfaces, 2016, 8(3): 1606–1614

[89] Rastgar S, Wittstock G. Characterization of photoactivity of nanostructured BiVO4 at polarized liquid-liquid interfaces by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2017, 121(46): 25941–25948

[90] Ahn H S, Bard A J. Surface interrogation of CoPi water oxidation catalyst by scanning electrochemical microscopy. Journal of the American Chemical Society, 2015, 137(2): 612–615

[91] Zigah D, Rodriguez-Lopez J, Bard A J. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Physical Chemistry Chemical Physics, 2012, 14(37): 12764–12772

[92] Park H, Leonard K, Bard A. Surface interrogation scanning electrochemical microscopy (SI-SECM) of photoelectrochemistry at a W/Mo-BiVO4 semiconductor electrode: quantification of hydroxyl radicals during water oxidation. Journal of Physical Chemistry C, 2013, 117(23): 12093–12102

[93] Cho S, Park H, Lee H, Nam K, Bard A. Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation. Journal of Physical Chemistry C, 2013, 117(44): 23048–23056

[94] Krumov M R, Simpson B H, Counihan M J, Rodriguez-Lopez J. In situ quantification of surface intermediates and correlation to discharge products on hematite photoanodes using a combined scanning electrochemical microscopy approach. Analytical Chemistry, 2018, 90(5): 3050–3057

[95] Kim J Y, Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy for a photoelectrochemical reaction: water oxidation on a hematite surface. Analytical Chemistry, 2018, 90(5): 3045–3049

, , , . Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Frontiers of Optoelectronics, 2018, 11(4): 333–347. Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Frontiers of Optoelectronics, 2018, 11(4): 333–347.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!