Photonics Research, 2018, 6 (6): 06000601, Published Online: Jul. 2, 2018   

Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion Download: 696次

Author Affiliations
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
4 School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China
Copy Citation Text

Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Lili Hu, Long Zhang, Longfei Wang, Guanshi Qin, Tianfeng Xue, Danping Chen, Weiqing Gao. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion[J]. Photonics Research, 2018, 6(6): 06000601.

References

[1] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 2006, 78: 1135-1184.

[2] M. Tsuzuki, L. Jin, M. Yamanaka, V. Sonnenchein, H. Tomita, A. Sato, T. Ohara, Y. Sakakibara, E. Omoda, H. Kataura, T. Iguchi, N. Nishizawa. Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film. Photon. Res., 2016, 4: 313-317.

[3] M. Klimczak, B. Siwicki, A. Heidt, R. Buczynski. Coherent supercontinuum generation in soft glass photonic crystal fibers. Photon. Res., 2017, 5: 710-727.

[4] A. M. Heidt, J. S. Feehan, J. H. V. Price, T. Feurer. Limits of coherent supercontinuum generation in normal dispersion fibers. J. Opt. Soc. Am. B, 2017, 34: 764-775.

[5] X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. O. Ilday, H. Tu, S. A. Boppart, D. Turchinovich. Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation. Photon. Res., 2017, 5: 750-761.

[6] Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, J. Wang. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and zblan fiber. Photon. Res., 2016, 4: 135-139.

[7] S. Vyas, T. Tanabe, M. Tiwari, G. Singh. Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation. Chin. Opt. Lett., 2016, 14: 123201.

[8] B. B. Yan, J. H. Yuan, X. X. Sang, K. R. Wang, C. X. Yu. Combined nonlinear effects for UV to visible wavelength generation in a photonic crystal fiber. Chin. Opt. Lett., 2016, 14: 050603.

[9] J. C. Knight. Photonic crystal fibres. Nature, 2003, 424: 847-851.

[10] P. St. J. Russell. Photonic crystal fibers. Science, 2003, 299: 358-362.

[11] J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21: 1547-1549.

[12] M. Chemnitz, J. Wei, C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, M. A. Schmidt. Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers. Opt. Lett., 2016, 41: 3519-3522.

[13] M. Liu, B. Zhao, X. Yang, J. Hou. Seven-core photonic liquid crystal fibers for simultaneous mode shaping and temperature sensing. Chin. Opt. Lett., 2017, 15: 060601.

[14] P. S. Maji, R. Das. Designing broadband fiber optic parametric amplifier based on near-zero single ZDW PCF with ultra-flat nature. Chin. Opt. Lett., 2017, 15: 070606.

[15] N. Nishizawa, J. Takayanagi. Octave spanning high-quality supercontinuum generation in all-fiber system. J. Opt. Soc. Am. B, 2007, 24: 1786-1792.

[16] C. Strutynski, P. Froidevaux, F. Desevedavy, J. C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, F. Smektala. Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers. Opt. Lett., 2017, 42: 247-250.

[17] Z. K. Dong, Y. R. Song, R. Q. Xu, Y. Zheng, J. R. Tian, K. X. Li. Broadband spectrum generation with compact Yb-doped fiber laser by intra-cavity cascaded Raman scattering. Chin. Opt. Lett., 2017, 15: 071408.

[18] A. V. Husakou, J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett., 2001, 87: 203901.

[19] A. M. Heidt. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J. Opt. Soc. Am. B, 2010, 27: 550-559.

[20] S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, A. Tunnermann. Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum. Opt. Express, 2011, 19: 20151-20158.

[21] A. Hartung, A. M. Heidt, H. Bartelt. Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Opt. Express, 2011, 19: 7742-7749.

[22] A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, H. Bartelt. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express, 2011, 19: 3775-3787.

[23] L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, Y. Ohishi. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. Opt. Lett., 2016, 41: 392-395.

[24] A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, A. Tunnermann. High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. Opt. Express, 2011, 19: 13873-13879.

[25] C. L. Huang, M. S. Liao, W. J. Bi, X. Li, L. F. Wang, T. F. Xue, L. Zhang, D. P. Chen, L. L. Hu, Y. Z. Fang, W. Q. Gao. Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region. Opt. Lett., 2018, 43: 486-489.

[26] Y. Liu, Y. B. Zhao, J. Lyngso, S. X. You, W. L. Wilson, H. H. Tu, S. A. Boppart. Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation. J. Lightwave Technol., 2015, 33: 1814-1820.

[27] J. J. Miret, E. Silvestre, P. Andres. Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers. Opt. Express, 2009, 17: 9197-9203.

[28] I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, E. Silvestre, M. V. Andres. Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550  nm. J. Lightwave Technol., 2017, 35: 3772-3779.

[29] S. K. Chatterjee, S. N. Khan, P. R. Chaudhuri. Designing a two-octave spanning flat-top supercontinuum source by control of nonlinear dynamics through multi-order dispersion engineering in binary multi-clad microstructured fiber. J. Opt. Soc. Am. B, 2015, 32: 1499-1509.

[30] M. Diouf, A. Ben Salem, R. Cherif, H. Saghaei, A. Wague. Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl. Opt., 2017, 56: 163-169.

[31] T. Martynkien, D. Pysz, R. Stepien, R. Buczynski. All-solid microstructured fiber with flat normal chromatic dispersion. Opt. Lett., 2014, 39: 2342-2345.

[32] M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Heidt, C. Radzewicz, R. Buczynski. Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion. Opt. Express, 2014, 22: 18824-18832.

[33] K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Bejot, F. Billard, O. Faucher, B. Kibler, W. Urbanczyk. Polarized all-normal dispersion supercontinuum reaching 2.5  μm generated in a birefringent microstructured silica fiber. Opt. Express, 2017, 25: 27452-27463.

[34] K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, W. Urbanczyk. Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber. Opt. Express, 2016, 24: 30523-30536.

[35] F. Li, Q. Li, J. H. Yuan, P. K. A. Wai. Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression. Opt. Express, 2014, 22: 27339-27354.

[36] AgrawalG. P., Nonlinear Fiber Optics (Academic, 2007).

[37] N. L. Boling, A. J. Glass, A. Owyoung. Empirical relationships for predicting non-linear refractive-index changes in optical solids. IEEE J. Quantum Electron., 1978, 14: 601-608.

[38] M. Feng, A. K. Mairaj, D. W. Hewak, T. M. Monro. Nonsilica glasses for holey fibers. J. Lightwave Technol., 2005, 23: 2046-2054.

[39] O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann. Analysis of OH absorption bands in synthetic silica. J. Non-Cryst. Solids, 1996, 203: 19-26.

[40] V. L. Kalashnikov, E. Sorokin, I. T. Sorokina. Raman effects in the infrared supercontinuum generation in soft-glass PCFs. Appl. Phys. B, 2007, 87: 37-44.

[41] C. Finot, B. Kibler, L. Provost, S. Wabnitz. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B, 2008, 25: 1938-1948.

[42] HeidtA. M.HartungA.BarteltH., “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source, AlfanoR. R., ed. (Springer, 2016), pp. 247280.

[43] M. H. Frosz. Validation of input-noise model for simulations of supercontinuum generation and rogue waves. Opt. Express, 2010, 18: 14778-14787.

[44] F. Krausz, M. Ivanov. Attosecond physics. Rev. Mod. Phys., 2009, 81: 163-234.

[45] M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, H. Crespo. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt. Express, 2012, 20: 688-697.

[46] Y. Liu, H. Tu, S. A. Boppart. Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Opt. Lett., 2012, 37: 2172-2174.

Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Lili Hu, Long Zhang, Longfei Wang, Guanshi Qin, Tianfeng Xue, Danping Chen, Weiqing Gao. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion[J]. Photonics Research, 2018, 6(6): 06000601.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!