激光与光电子学进展, 2020, 57 (19): 190001, 网络出版: 2020-10-10   

脉冲激光沉积制备一维有序氧化物纳米结构的研究进展 下载: 1413次封面文章特邀综述

Research Progress on Fabrication of One-Dimensional Well-Ordered Oxide Nanostructures by Pulsed Laser Deposition
范丽莎 1,2,3,4张硕文 1,2,3,4张群莉 1,2,3,4姚建华 1,2,3,4,*
作者单位
1 浙江工业大学机械工程学院, 浙江 杭州 310023
2 浙江工业大学激光先进制造研究院, 浙江 杭州 310023
3 高端激光制造装备省部共建协同创新中心, 浙江 杭州 310023
4 高端装备激光再制造浙江省工程研究中心, 浙江 杭州 310023
摘要
功能氧化物一维有序纳米结构因具有奇特的物理化学特性而在纳米激光器、平板显示器、磁记录器、纳米晶体管等器件设计领域展现出了巨大的应用潜力。精确合成与控制组装功能氧化物一维有序纳米结构是新型纳米器件设计开发的关键。脉冲激光沉积是目前制备氧化物一维有序纳米结构的重要方法之一。本文综述了脉冲激光沉积技术的原理及特点,着重分析了脉冲激光沉积技术制备氧化物一维有序纳米结构的方法和机理,介绍了近年来脉冲激光沉积应用于典型氧化物纳米结构制备的研究进展,最后指出了脉冲激光沉积制备一维有序纳米结构存在的问题,并展望了超快激光在该技术中的应用前景。
Abstract
One-dimensional (1D) well-ordered nanostructures of functional oxides open new avenues of applications in wide-range of fields, such as nano-laser, flat panel display, magnetic memory, nano-transistors due to their unique chemical and physical properties. Precise synthesis and assembly of well-ordered 1D oxide nanostructures is therefore essential to the development of next generation nanodevices. Pulsed laser deposition (PLD) is one of the most important methods for producing well-ordered 1D oxide nanostructures. Here we briefly introduce the fundamentals and characteristics of PLD techniques, discuss in detail on the routes and mechanism of preparing 1D well-ordered oxide nanostructures by PLD, and review current research process centering on several typical oxide nanostructures fabricated by PLD. At the end of this review, we briefly point out the existing problems in preparing well-ordered 1D nanostructures by PLD and prospect the application of ultrafast laser in this technology.

1 引言

一维有序纳米材料是指横向方向为纳米尺度(1~100 nm)、长度方向为宏观尺度的结构材料,其主要结构形式包括纳米管[1-4]、纳米线[5-7]、纳米柱[8-10]和纳米带[11-13]等。一维有序纳米材料不仅具有大的比表面积,而且具有取向有序性,为研究电、光、热等特性的尺寸效应和量子效应提供了一个完美的研究主体[14]。此外,一维有序纳米结构作为一个整体,可以体现纳米结构单元的集体效应,具有单一纳米结构单元所不具备的协同效应和耦合效应等,可直接被应用于多种功能器件(如光子晶体、光栅、存储单元等[15-20])。

功能氧化物具有比半导体和金属复杂得多的化学配比、离子价态和晶体结构,呈现出了丰富的、奇异的物理特性,如离子导体、多铁性、电致电阻效应、光电效应、磁光效应和非线性光学等[21-28]。功能氧化物的一维有序纳米结构由于维度降低,相应的电子态被限制在尺度小于电子平均自由程的体系中,电子电荷、自旋、轨道、晶格之间的关联作用加强,从而表现出了与块体材料行为特征相关却又截然不同的新奇的物理特性。除了众所周知的纳米结构能级量化外[29],这些奇特的物理特性还包括熔点和热导率的降低、量化的电导/电阻率、高度的磁各向异性、较低的激发阈值,以及沿一维纳米结构纵轴的光偏振调制[30-35]。除此之外,将具有不同电学、磁学、光学等性质的功能氧化物在原子尺度上精确地堆叠外延生长在一起,形成具有周期性结构的一维纳米超晶格或有序的纳米复合材料,在功能交叉耦合和量子尺寸效应的协同效应下,就可制备出具有特殊光、磁、电学特性的人工复合“超材料”[36-39]。近年来,功能氧化物一维有序纳米材料的控制精确合成和控制组装技术已成为学术研究和工业应用的前沿热点。

目前,功能氧化物一维有序纳米材料可控可靠的制备方法有多种多样,包括水热法[40-41]、热蒸发法[11,42]、化学气相沉积(CVD)法[43-45]、磁控溅射法[46-47]、熔盐法[48]、模板法[49-50]和一些复合方法[51-54]。作为制备氧化物一维有序纳米结构的重要方法之一,脉冲激光沉积(PLD)法具有许多优点,如:良好的保成分性、原子级的生长精度控制、工艺参数任意调节、极大的工艺兼容性,已广泛应用于原位生长高质量、低缺陷密度、成分复杂的氧化物材料[55-58]。PLD法制备氧化物一维有序纳米结构主要是通过与基于模板或催化剂阵列的常规纳米制造工艺相结合来实现的。同时,PLD过程是一个热动力学高度非平衡的过程,具有易于控制、快速凝聚、低压、高能量等特点,通过精确控制多维度制备参数,可在不采用模板或催化剂的情况下,利用晶体生长模式的改变实现氧化物一维有序纳米结构的自组装制备。PLD技术从过程复杂、容易引入杂质的传统模板/催化剂辅助纳米结构制备形式,转向控制方便、结构有序的自组装制备形式,顺应了当前该领域的发展趋势,是研究人员关注的重要方向之一。

本文首先概述了PLD技术的原理和特点,系统介绍了PLD制备氧化物一维有序纳米结构的方法和机理,着重分析了PLD自组装一维有序纳米结构技术的原理和应用实例;然后总结了近年来PLD应用于典型氧化物一维有序纳米结构制备的研究进展;最后指出了PLD制备一维有序纳米结构面临的挑战,并展望了超快激光在该技术中的应用前景。

2 PLD制备有序纳米结构的方法和机理

PLD系统主要由激光源、聚光镜、目标靶材、真空腔、冷却环、真空泵和气流阀等组成,如图1所示。PLD方法的机理如下:首先,高能量、短脉冲激光束聚焦于靶材表面,辐照处的靶材材料通过吸收激光能量迅速升温并超过其蒸发温度,发生激光烧蚀,材料烧蚀产生的正离子、电子和中性原子与光相互作用,形成局域化的高温(>104 K)高压等离子体;随后,局部等离子体与激光束进一步作用,等离子体温度继续升高,并在垂直于靶材表面方向形成大的温度和压强梯度,等离子体核沿该方向向外高速膨胀形成一个细长的椭球形等离子体羽辉;最后等离子体羽辉中的活性粒子(包括离子、原子和原子团簇等)随着等离子体定向局域膨胀溅射到基底上,在基底表面凝结成颗粒并生长为薄膜等微纳结构。

图 1. PLD系统示意图[59]

Fig. 1. Schematic of PLD system[59]

下载图片 查看所有图片

PLD的整个过程包含着复杂的物理现象,涉及到高能量脉冲辐射冲击固体靶材时激光与物质之间的物理相互作用,等离子体羽辉的形成、扩散,蒸发物质通过等离子体羽辉到达热基片表面发生的吸附、扩散和凝聚,以及最终的材料生长、微观结构演化[60]

PLD被广泛用于薄膜材料的制备,如半导体氧化物薄膜[61-64]、陶瓷氧化物薄膜[65-67]、非氧化物薄膜[68-71]和其他涂层[72-74]等的制备,同时也被应用于零维[75-77]、一维[78-80]微纳结构材料的制备。不同材料和结构的制备方法和机理不尽相同。以下将系统讨论制备一维有序纳米结构的几种典型方法和机理。

2.1 模板辅助法

将PLD法和基于模板的纳米制造工艺相结合是常见的一维有序纳米结构的制备路线。该方法首先在基底上制备孔径为纳米级到微米级的多孔模板,脉冲激光剥蚀产生的高能量等离子体羽辉中的活性粒子被输送到模板的孔壁上并快速凝结,形成均匀有序的一维纳米结构。常用的模板材料包括多孔氧化硅和多孔氧化铝[81],其中阳极氧化铝(AAO)是一种非常均匀的自组装纳米结构阵列材料,已被广泛应用于制备低维纳米结构。目前制备的AAO膜孔径分布在20~200 nm之间,膜厚分布在10~100 nm之间,孔隙率高达1011 cm-3。AAO膜的孔径大小一致,可制备孔径相同、单分散的纳米结构阵列,因此,模板法具有良好的可控性。这种AAO模板阵列材料不仅是纳米科学基础研究的热点材料,而且在高存储密度硬盘、场发射器件、高效蓄电池、纳米传感器、光子晶体等领域也具有广阔的应用前景。

科研工作者已利用模板辅助PLD法制备了一系列一维有序纳米结构材料。2008年,Lee等[82]用超薄AAO掩模辅助PLD技术,在Pt/MgO(100)和Nb∶SrTiO3(100)单晶基底上沉积了大面积外延铁电Pb(Zr0.20Ti0.80)O3(PZT)纳米阵列。2009年,Li等[83]将聚苯乙烯(PS)单层胶体晶体作为模板,采用Nd∶YAG激光源在Si基底上直接生长了垂直有序排列的Co3O4纳米柱阵列,该纳米柱阵列具有可精确控制的表面粗糙度和形貌特征。2009年,Gao等[53]以AAO为模板结合PLD技术,合成了磁性CoFe2O4(CFO)有序纳米点阵列,该阵列表现出了微弱的磁化滞后回路和独特的温度依赖磁性行为。2017年,Tian等[84]以AAO为模板,将PLD法与离子束刻蚀相结合,制备了多铁性BiFeO3(BFO)有序纳米环阵列(纳米环的内径为12 nm,壁厚为30 nm,高度约为10 nm),制备过程如图2所示。即:首先将AAO掩模转移到Nb∶SrTiO3基底上,然后采用PLA技术在基底上沉积BFO纳米点阵,最后利用氩离子束垂直刻蚀技术形成BFO纳米环阵列。

图 2. AAO模板辅助PLD法制备纳米环阵列示意图[84]

Fig. 2. Schematic of the template-assisted PLD for growing nano-ring arrays[84]

下载图片 查看所有图片

模板辅助法可以比较容易地控制纳米结构的长度、直径、分布,但制备后需要将纳米结构从模板中分离出来,分离步骤复杂且过程冗长,容易在分离过程中引入杂质,限制了此方法在实际器件制备中的应用。

2.2 催化剂辅助法

PLD技术还可以在金属催化剂的辅助下,于高温环境中通过气液固相(VLS)反应制备氧化物一维有序纳米结构[85]。气液固相生长模型是制备一维纳米结构最为成熟的理论之一。一维纳米结构的生长过程可通过Wagner公式表述为

Rmin=[(2V1)/(RTlnS)]σlv,(1)

式中:RminV1σlvSRT分别为纳米晶的最小半径、金属催化剂液滴的摩尔体积、气液表面能、气相过饱和度、气体常数、反应温度[86]。如图3所示,在恒定的合成温度下,金属催化剂首先溶解,活性气相分子连续溶解于金属催化剂液滴中,直到饱和;溶质在液滴-基底界面处析出并沉积在基底上。气液固相反应过程持续进行就实现了一维纳米结构的生长。尽管近年来学者们对气液固相模型进行了诸多深入研究[87-90],但气液固相模型的基础框架并未改变。

气液固相反应已被广泛应用于制造基于纳米线结构的半导体原型器件,如逻辑电路、LED和气体传感器等[91-93]

图 3. 催化剂辅助PLD法制备纳米线示意图[85]

Fig. 3. Schematic of catalytic-assisted PLD synthesis of nanowires[85]

下载图片 查看所有图片

目前,通过催化剂辅助PLD法制备的一维纳米结构材料包括Sn O2[94]、MgO[95]、ZnO[96]、W O3[97]等多种氧化物。下文以ZnO为例进行阐述。制备一维ZnO纳米棒结构可使用的金属催化剂包括Au、Cu、Co、Sn等[98-101]。在使用催化剂辅助PLD法制备一维纳米结构方面,研究人员进行了多种尝试,如:2004年,Nobis等[102]在Au的催化下于蓝宝石基底表面生成了ZnO柱状结构;2005年,Lorenz等[103]采用高压PLD技术在覆盖有Au纳米涂层的蓝宝石单晶上成功生长了MgxZn1-xO纳米线;2007年,Marcu等[104]通过Au催化剂辅助PLD技术在MgO(100)单晶基底上生长了MgO纳米线,并发现在某个激光能量的临界值以下,MgO的表面形貌倾向于岛状而不是纳米线;2007年,Nagashima等[105]发现Au催化剂含量和基材温度对MgO纳米线的生长控制具有重要作用;2008年,Yanagida等[106]以Au为催化剂,在气液固相生长机制下采用PLD制备了MgO纳米线,结果发现,催化剂超过其临界尺寸后,氧化物纳米线的生长不再遵循气液固机制。

催化剂辅助PLD技术发展得较早,但金属催化剂最终会作为杂质存在于纳米结构中,容易形成缺陷,且其去除过程比较复杂,因此限制了其在纳米器件制备方面的应用。近年来,开展无催化剂辅助PLD技术制备氧化物一维纳米结构的研究引起了人们的极大兴趣。

2.3 自组装法(无模板/无催化剂)

模板或催化剂辅助PLD技术是制备一维有序纳米结构的常规方法,但存在制备过程繁冗复杂、结晶质量不高等缺点。PLD技术是一种热动力学平衡态高度可控的沉积技术,它可基于多维激光参数和制备参数对材料的生长过程进行精确控制,使得通过调制晶体生长模式实现功能氧化物一维有序纳米材料的自组装成为可能。然而,由于对氧化物纳米结构的晶体生长过程和机理缺乏深刻认识,人们在利用晶体生长的微观结构成形控制自组装技术制备取向良好的垂直有序纳米结构方面仍面临巨大挑战。下面将系统介绍几种常见的PLD自组装氧化物一维有序纳米结构的制备方法。

2.3.1 纳米粒子辅助法

作为一种制备高质量薄膜材料的沉积技术,PLD技术通常是在相对较低的氧气压强(<1 Pa)下进行的。而改进的纳米粒子辅助脉冲激光沉积技术(NAPLD)采用的是相对较高的气氛压强(几十到几百帕),可促使等离子体羽辉中形成较大的气相原子团簇。这些原子团簇在基底上形成了均匀分布的液滴状晶种层,该晶种层作为晶核点可以引导有序纳米结构成形,在没有模板或催化剂的情况下,遵循气固(VS)生长机制实现一维有序纳米结构的制备[107-111]

2003年,Yan等[92]提出了形核引发的电场辅助生长模型,然后在外延生长的GaN层和蓝宝石基底上制备了高取向的Ga掺杂ZnO纳米柱阵列,其中Ga的掺杂水平在ZnO纳米柱的形成中起关键作用,而氧分压和基底温度也会影响纳米柱的形貌。2006年,Sun等[112]发现:在Si基底上直接生长的ZnO柱呈针状,其直径与长度分别在20~60 nm和200~800 nm范围内,并且大多数情况下其尖端覆盖着ZnO颗粒;若在基底上预沉积一层ZnO薄膜,则可得到较长(1~1.2 mm)、更薄(6~20 nm)的致密纳米柱阵列,而且无明显的颗粒覆盖。2006年,Liu等[113]在60~250 Pa 相对较高的背景压强和550~700 ℃的基底温度下,合成了直径不同的ZnO纳米柱。2009年,Fuge等[114]使用两阶段扩散脉冲激光沉积(DPLD)技术(先采用脉冲激光烧蚀ZnO靶材形成约50 nm厚的种子层,然后将样品转向远离烧蚀羽流的传播方向)生成了密集的超薄纳米柱阵列,这些纳米柱的直径约为10 nm,其纵横比比同条件下传统PLD技术生长的纳米柱高20倍。如图4所示,2018年,Karnati等[111]在高压氛围下利用激光烧蚀等离子体羽辉中存在的ZnO原子团簇直接在基底上沉积了ZnO纳米颗粒,实现了无催化剂、无模板的自组装垂直排列ZnO纳米柱结构;此外,他们发现改变基底温度和退火环境能够调整纳米柱的直径。除了最为常见的ZnO纳米柱结构外,Sn O2[115]、ITO[116]在高背景压强下也可以实现无催化剂一维纳米柱结构的制备。

图 4. NAPLD法制备垂直排列的ZnO纳米柱示意图[111]

Fig. 4. Schematic of the growth of vertically aligned ZnO nanorods using NAPLD process[111]

下载图片 查看所有图片

NAPLD制备的纳米结构的尺寸仅取决于生长条件以及初期成核密度和成核尺寸,这种方法制备的纳米结构的位置、密度、尺寸、结晶度和缺陷受生长温度、环境气氛、退火温度、脉冲激光频率的影响很大。此外,NAPLD生长的纳米结构是在高气氛压强下沉积的,难以避免产生生长缺陷,这些缺陷会影响纳米结构的结晶质量以及电学和光学特性。

2.3.2 表面扩散限制法

PLD过程包含多种表面原子的运动过程,如扩散、成核、附着/分离和层间运输等。表面扩散系数的增加会促使等离子体羽辉形核后聚集,这意味着材料在较大厚度时能达到连续,从而形成致密的薄膜。然而,在形核聚集过程中存在许多生长不稳定因素,如扩散受限导致的聚合、团聚、错位等。这种不稳定的生长过程与理想的逐层致密生长所需的表面平滑过程相竞争,导致了生长缺陷的产生和生长表面的粗糙化。在常规氧化物薄膜的外延过程中,为了获得原子级表面平整均匀的薄膜材料,科研人员尝试通过调整实验参数来提高表面扩散系数,促进形核聚集的快速完成。

然而,本研究团队[117]发现,通过调整关键制备参数适当降低表面扩散系数,可在一定程度上抑制等离子体羽辉在衬底表面的形核聚集,提高生长表面粗糙度,改变致密生长机制,制备出疏松的一维有序纳米结构。如图5所示,生长初期形成的表面起伏导致入射原子吸附于表面凸起顶端的概率大于落在凹槽中的概率。随着这些表面刻面凸起的长大,这些凸起的根部形成阴影区域,不能再接收到大角度的入射束流,束流粒子在表面凸起顶端择优生长,无法填补相邻柱状结构之间的沟槽,这样,柱状结构逐渐长大,最终形成了垂直有序的纳米结构。表面扩散限制法与纳米粒子辅助法的区别在于前者不依赖于高的气氛压强,主要通过提高沉积速率来抑制晶粒的横向生长,控制沉积材料的微观结构演变。在PLD过程中,沉积速率可以通过多种方式进行控制,包括控制激光光斑的尺寸、激光能量密度、气氛压强、激光频率、基底温度等。此外,本研究团队还发现,当沉积速率小于临界沉积速率(每个脉冲下的沉积厚度约为0.06 nm)时,原子表面的扩散速度加快,生成致密的连续薄膜;当沉积速率大于临界沉积速率时,吸附原子的表面扩散受到抑制,在表面刻面最低能和阴影效应的双重作用下生成一维垂直有序的柱状纳米结构[114]

图 5. 表面扩散限制法制备一维垂直有序纳米结构的生长机理示意图[117]

Fig. 5. Schematics of the growth mechanism of one-dimensional well-ordered nanostructures by limiting surface diffusion[117]

下载图片 查看所有图片

沉积速率是决定表面形态和结晶质量的重要参数。以二维晶格模型为例,相邻两个原子到达基底的平均时间间隔可以表示为[118]

Δt=3a2nv(2)

式中:v为沉积速率;a为最近相邻原子的距离;n为铺满单层的原子数。沉积速率越高,两个连续沉积的原子到达基底的时间间隔越短,新进入的原子快速覆盖已吸附原子,极大地缩短了吸附原子在基底表面的扩散时间,从而减小了吸附原子的表面扩散系数。

本研究团队采用PLD技术制备了具有不同的电、磁、光等物理特性的具有原子级清晰界面的高质量氧化物一维有序单晶纳米结构材料,如TiO2、CeO2、Y2O3、CoFe2O4[117,119-120],并制备了CeO2/Y2O3[121]一维纳米超晶格结构。

2.3.3 晶化自主分离法

诸多研究发现,在合适的氧化物组合下,采用PLD技术共沉积方法能使其中一种氧化物相自发地形成纳米柱镶嵌于另一种氧化物基体中,从而形成一种特殊的多维纳米复合结构[122-124]。在这种嵌入式多维纳米复合结构中,氧化物相之间的界面会产生高密度、强关联的电子电荷、自旋、轨道、晶格耦合,促进了各种新奇物理效应的产生,使新型器件的设计成为可能。

最典型的纳米复合材料是单晶尖晶石纳米柱异质外延嵌入钙钛矿基体形成的复合磁电纳米结构薄膜[125],其中基质是压电性BiFeO3,纳米柱是压磁性CoFe2O4。这两种氧化物相的表面能不同,因此其在基底表面的润湿性不同,最终使得这两种氧化物相在晶化过程中自主分离组装成了复合纳米结构材料。

根据Winterbottom模型,晶核的形状由基底表面能γ1、晶相表面能γ2、基底与晶相界面的表面能γ12决定,晶相在基底上的润湿能力由Δγ=γ12-γ1决定。若Δγ≤-γ2,则该晶相能完全润湿基底,其生长过程遵循不存在结晶势垒的逐层生长模式;若γ2≥Δγ≥-γ2,则该晶相能部分润湿基底,但需要克服一定的结晶势垒成核,从而遵循岛状生长模式(Volmer-Weber模式)。

以下以钙钛矿-尖晶石系统[126]为例进行阐述。如图6所示,大多数钙钛矿相的热平衡形状是由6个{100}表面构成的立体形,而尖晶石的热平衡形状是由{111}表面构成的八面体,因此,钙钛矿和尖晶石在同一基底表面上的生长模式显著不同。在{001}取向的单晶基底上,钙钛矿可以完全润湿基底表面,而尖晶石却形成具有{111}表面刻面的金字塔形晶核;在{111}取向的单晶基底上,两相的生长成核恰好相反。因此,当激光烧蚀尖晶石和钙钛矿混合的复合靶材时,在晶化过程中,两种氧化物相在基底表面自主分离,得到钙钛矿基质中嵌有尖晶石纳米柱的多维纳米复合结构。

图 6. 在{001}和{111}表面晶化自主分离得到钙钛矿-尖晶石复合纳米结构薄膜示意图[126]

Fig. 6. Schematics of the perovskite-spinel composite nanostructured film by crystallization autonomous separation on {001} and {111} surfaces[126]

下载图片 查看所有图片

另一种采用PLD制备的纳米复合结构材料是引入纳米柱作为人工钉扎中心的超导氧化物材料,它可以改善磁场作用下超导体的临界电流密度。2008年,Teranishi等[127]采用PLD技术通过激光剥蚀混合了BaMO3 (BMO, M=Zr,Sn)的ErBa2Cu3O7(EBCO)陶瓷靶材,在SrTiO3 (STO)(100)基底上制备了BMO纳米柱复合EBCO薄膜,BMO纳米柱的直径为10~20 nm;他们对EBCO薄膜进行研究后发现,在平行于c轴的磁场作用下,BMO纳米柱复合EBCO薄膜的临界电流密度得到了增强。2007年,Ichinose等[128]通过改变靶材中的BaZrO3含量以及交替烧蚀包含BaZrO3的YBa2Cu3O7混合靶材和纯YBa2Cu3O7靶材,对BaZrO3纳米柱的长度和密度进行了调控。

3 PLD制备一维有序纳米结构氧化物的类别

功能氧化物一维有序纳米结构在新型纳米器件设计和传统器件升级(如场发射显示器、高密度存储元件、纳米谐振器、紫外线传感器、气体传感器等)方面具有广阔的应用前景。在该节,本文将介绍近年来PLD在典型氧化物纳米结构制备方面的研究进展。

3.1 二元氧化物

3.1.1 ZnO

ZnO是PLD制备的重要氧化物材料之一。已报道的一维ZnO纳米结构主要包括线状、针状、柱状、纤维状、管状、指甲状及带状[129-135]。一维ZnO纳米结构具有直接带隙、高激子结合能(60 meV)、高迁移率、高比表面积和长径比、高强度、高导热性和良好的热稳定等,已被广泛应用于太阳能电池、气体传感器、激光器、紫外光探测器、发光二极管、压电转换器件和阻变存储器等[5,136-142]。一维ZnO纳米结构的PLD制备可分为催化剂辅助法和纳米粒子自组装两类。

2005年,Zhang等[143]以飞秒激光作为光源,Au作为催化剂,合成了一维有序ZnO纳米线结构。2010年,Yang等[144]采用PLD技术在高温高压下于Si基底上先沉积一层约10 nm的Au层,然后烧蚀ZnO∶Eu2O3复合靶材,制备了掺Eu的ZnO纳米线;他们对该纳米线进行研究后发现,该纳米线顶端覆盖着Au-Zn合金颗粒,证实了这种催化剂辅助法制备的一维ZnO纳米线结构遵循气液固相生长机制。2011年,Palani等[145]以Sb作为催化剂在Si基底上制备了ZnO纳米结构,但由于Sb的温度敏感性,制备的ZnO纳米具有纳米线和纳米片两种结构,前者在光致发光光谱中表现出了强烈的绿光发射特性。

2009年,Premkumar等[146]分别采用Nd∶YAG (1064 nm, 532 nm) 激光和KrF (248 nm) 激光烧蚀ZnO靶材,在Al2O3和GaN基底上沉积了ZnO薄膜,结果发现:只有当激光波长为532 nm时,才能够在GaN和Al2O3基底上制备一维ZnO纳米柱结构,所制备的ZnO纳米柱源于生长初始阶段在基底表面形成的ZnO亚微米晶核层。Premkumar等采用的方法是一种纳米颗粒自组装PLD生长方法。2011年,Liu等[147]探究了三种不同能量密度(4.0, 1.8, 1.2 J/cm2)下自组装生长的ZnO纳米柱的形态以及光致发光和氧气传感特性,结果发现,能量密度减小时相应的纳米柱长度、直径、密度都减小,且垂直度变好,如图7所示。后续测试显示,三种状态的ZnO纳米柱都具有氧气传感功能,但高激光能量密度下ZnO纳米柱的响应最强。

图 7. 三种不同激光能量密度下生长的ZnO纳米柱的俯视图和横截面SEM图像[147]。(a~b) 4.0 J/cm2;(c~d) 1.8 J/cm2;(e~f) 1.2 J/cm2

Fig. 7. Top view and cross-sectional view SEM images of ZnO nanorods grown under three different laser influences[147]. (a-b) 4.0 J/cm2; (c-d) 1.8 J/cm2; (e-f) 1.2 J/cm2

下载图片 查看所有图片

除此外,PLD生长的一维ZnO纳米结构的形貌与光学性能可以通过调节生长参数(如基底温度、氧分压和生长时间等[57,110,148])来控制。在制备ZnO一维有序纳米结构的PLD方法中,纳米粒子辅助自组装法无催化剂或模板,制备过程简单,在制备ZnO纳米结构上具有更大的潜力。

3.1.2 TiO2

一维TiO2纳米结构具有出色的电子电荷传输特性、离子交换/嵌入活性、吸附/光催化特性和高的表面体积比,在光催化(包括污染物降解、CO2转化为能量燃料、水分解等)、电池(含染料敏化型、量子点敏化型和钙钛矿型太阳能电池以及锂电子电池等)、超级电容等领域应用广泛[149-156]

本研究团队[119]采用PLD技术,通过表面扩散限制法,自组装制备了具有高比例{001}表面刻面的一维锐钛矿型TiO2“纳米刷”结构,如图8所示,{001}面占比高达50%。TiO2是一种多晶型材料,在自然界中以锐钛矿、板钛矿和金红石这三个主要晶相存在。锐钛矿TiO2的Wulff晶形以低能量{101}面为主,但研究发现化学能较高的{001}表面比{101}表面更具活性,具有高比例{001}表面刻面的TiO2纳米结构在光电转化、光催化、水裂解、染料电池等多领域表现出优异的性能。

图 8. 具有{001}高活性表面刻面的单晶TiO2纳米刷[119]。(a) TEM截面微观形貌图;(b) TiO2纳米刷、纳米颗粒和纳米薄膜的光电转化I/V曲线

Fig. 8. Single-crystallineTiO2 nanobrushes with high energy {001} facets [119]. (a) Cross-sectional SEM images showing the nanobrush microstructure; (b) photovoltaic I/V curves of TiO2 nanobrushes, nanoparticles, and thin film

下载图片 查看所有图片

2009年,Li等[157]以单层聚苯乙烯胶体为模板,采用PLD技术,制备了周期排列的TiO2六角形纳米柱,如图9(a)所示,纳米柱排列的周期和相邻纳米柱之间的距离可以通过改变模板中聚苯乙烯小球的尺寸以及制备过程中的背景气体压力来控制。该团队系统分析了六角形TiO2纳米柱的场发射特性,发现六角形TiO2纳米柱的开启场强最低为5.6 V/μm,场发射增强因子最大为838。与无法测得场发射信号的由纳米颗粒组成的薄膜材料相比,垂直排列的六角形TiO2纳米柱阵列表现出了优异的场发射性能,如图9(b)所示。除此外,六角形TiO2纳米柱阵列的场发射特性与该结构阵列的周期性密切相关,如图9(c)所示,随着周期增大,单位面积内的纳米柱数量减少,场发射增强因子降低。2014年,Nechache等[158]采用PLD技术,通过烧蚀Ti金属靶材,在预先沉积了Ti和Au薄膜的Si基底上制备了一维TiO2纳米线结构。

图 9. 六角形TiO2纳米柱阵列[157]。(a) SEM表面形貌图; (b) SEM截面形貌图;(c)场发射I-V曲线;(d)场发射增强因子与阵列周期的关系

Fig. 9. Hexagonal nonclose-packed TiO2 nanorod arrays[157]. (a) SEM image of the surface morphology; (b) SEM image of the cross-sectional morphology; (c) field emission I-V curve; (d) the relationship between field-enhancement factor and array period

下载图片 查看所有图片

3.1.3 WO3

氧化钨(WO3)是一种带隙为2.6~3.0 eV的n型半导体金属氧化物,具有独特的电致变色[159]、光致变色[160]、热致变色[161]和气致变色[162]等特性,被广泛应用在智能窗户、传感器、催化剂、电池、超级电容上[163-167]

2011年,Ponzoni等[169]采用PLD技术制备了由纳米颗粒和纳米柱组成的具有不同形貌特征的WO3纳米结构材料;对其进行研究后发现,以纳米柱为主的纳米结构对氨气表现出更高的敏感度,以纳米颗粒为主的纳米结构的气体敏感性更高,这些差异有助于获得选择性气体检测器件。2012年,Ahmad等[170]使用193 nm ArF激光器,采用PLD技术,在电导传感器上成功制备了用于H2和乙醇传感器的WO3纳米柱结构。2014年,Huang等[168]在低氧背景压强下,使用193 nm KrF准分子激光器,在W、Ta和Cu基底上制备了WO3纳米柱结构。图10显示了在不同W基体温度(500~700 ℃)下制备的WO3纳米柱的覆盖率和长度变化趋势,可见,WO3纳米结构的特征尺寸与基底温度密切相关。该研究还发现在W或Ta基底上制备的纳米柱长度在数百纳米范围内且具有均匀的横截面,而生长在Cu基底上的纳米柱呈锥形,长度较长且具有树枝状微观结构,表现出显著的场发射特性。

图 10. 采用PLD技术在不同的W基体温度下制备的WO3纳米柱[168]

Fig. 10. WO3 nanorods prepared by PLD with varied W substrate temperature[168]

下载图片 查看所有图片

3.2 多元氧化物

多元氧化物材料通常具有各种突出的特性,例如铁电、压电和超导特性[171-173],常被应用于功能电子器件上,如非易失性存储器、微型电动机和传感器等[174-176]。虽然以钙钛矿ABO3和AB2O4结构为主的多元氧化物具有丰富的物相,但钙钛矿的相稳定性较差,大大限制了其一维纳米结构的制备。因此,与二元氧化物相比,关于多元氧化物一维纳米结构的研究较少。但近年来,随着PLD技术的发展以及对PLD生长技术的深入了解,多元氧化物一维有序纳米结构的报道逐渐增多。

3.2.1 CoFe2O4

2004年,Zheng等[124]采用PLD技术,在STO基底上制备了纳米结构的BaTiO3-CFO纳米复合铁电磁体,BaTiO3基体内镶嵌的CFO纳米柱的尺寸均匀,平均间距在20~30 nm之间。2005年,Li等[177]采用PLD技术,分别在具有{001}和{110}取向的STO单晶基底上自组装生长了PbTiO3-CFO复合纳米结构薄膜;结果发现,两种基底上都生长了包含有垂直柱状或片柱状CFO的复合纳米结构,但在{001}取向基底上生长的结构平行于{110}面,而在{110}取向基体上生长的纳米结构平行于{111}面。2020年,Tang等[178]采用PLD技术在Pb(Mg1/3Nb2/3)0.70Ti0.30O3(PMN-30PT)单晶基底上外延制备了CFO和SrRuO3纳米柱异质结构。这种自组装的纳米柱异质结构作为电极具有增强的介电常数和压电常数。

通过精确控制热力学表面平衡和动力学扩散限制聚集之间的微妙平衡过程,本研究团队[120]采用PLD技术制备了如图11所示的具有超大纵横比且垂直排列的单晶CFO纳米刷结构,该结构具有很高的饱和磁化强度,而且CFO纳米刷的磁各向异性可通过纳米刷的长度进行控制。该结构有望被应用于纳米磁性存储器件中。

图 11. 表面扩散法制备的CoFe2O4纳米刷的结构表征[120]。(a) 纳米刷的STEM截面形貌图;(b)纳米刷侧壁的原子尺度高分辨率STEM图;(c)纳米刷衬底过渡区域STEM截面形貌图;(d)纳米刷衬底界面的原子尺度高分辨率STEM图;(e)纳米刷衬底界面的傅里叶转换图

Fig. 11. Microstructures of CoFe2O4 fabricated by surface diffusion method[120]. (a) STEM image showing the cross-sectional structure of nanobrushes; (b) atomic-resolution STEM image of the sidewall of a nanobrush; (c) STEM cross-section image showing the nanobrush/substrate interface; (d) atomic-resolution STEM image showing the nanobrush/substrate interface; (e) Fourier transform of nanobrush/substrate interface

下载图片 查看所有图片

3.2.2 Pb(Zr1-xTix)O3

在多元金属氧化物中,具有钙钛矿结构的PZT由于具有极高的介电常数、大的磁滞和出色的压电系数而成为最有代表性的压电陶瓷材料之一,被广泛应用于基础研究和实际器件中。2012年,Chen等[179]采用PLD技术在STO基底上外延生长了具有锥度形态的单晶PZT纳米线阵列,并在不同温度和压力下,系统研究了PZT膜或纳米线的生长窗口(见图12)。2018年,Okamoto等[67]采用PLD技术,在高于典型薄膜生长所需氧分压一个数量级的氧气压强下自组装生长了PZT纳米柱,结果发现在较高的基底温度和较远的靶-基距离下,PZT纳米柱的平均直径较大,可通过调节PZT纳米柱的直径调节其压电响应。Nguyen等[180]发现在PZT膜沉积过程中激光脉冲速率的变化在控制微结构特征中起关键作用,并深刻影响了薄膜的压电响应:高脉冲速率有利于沉积锥形晶粒结构和稀疏的PZT柱状结构,导致有效纵向压电系数值升高。

图 12. PZT纳米线阵列[179]。(a)~(g)不同生长温度下制备的PZT纳米线的SEM界面形貌图;(h) PZT纳米线长度和过渡区PZT薄膜区厚度随生长温度的变化曲线;(i) PZT纳米线在不同温度和压力下的生长窗口

Fig. 12. SEM images of vertically aligned taper PZT nanowires arrays[179]. (a)--(g) SEM interface images of PZT nanowires prepared at varied growth temperatures; (h) the lengths of PZT nanowires and the thicknesses of PZT film in transition region as the function of growth temperature; (i) growth window of the PZT nanowires at different temperatures and pressures

下载图片 查看所有图片

3.2.3 YBa2Cu3O7

YBa2Cu3O7(YBCO)的一维纳米结构可以通过溶胶-凝胶[181-183]、静电纺丝[184]、生物聚合[185]、溶液化学[182]、超声辐照[186]等方法制备。2000年,Zhang等[187]采用PLD技术,在YBCO纳米颗粒上制备了直径在18~96 nm、长度在几微米范围内的一维YBCO晶体纳米柱。如图13所示,所制备的YBCO纳米柱几乎都垂直于颗粒表面,且在630 ℃左右制备的纳米柱比在较高温度(680 ℃)下制备的纳米柱更短、更薄。

图 13. 不同温度下采用PLD法生长的YBCO纳米柱[187]。(a) 630 ℃;(b) 680 ℃

Fig. 13. YBCO nanorods grown by PLD at different temperatures[187]. (a) 630 ℃; (b) 680 ℃

下载图片 查看所有图片

3.3 纳米异质结构

一维纳米异质结构包括一维核壳结构与轴向超晶格结构。与二维纳米结构相比,一维纳米异质结构在发光二极管、激光器、传感器、生物标签、量子器件和热电材料中的应用吸引着越来越多的目光[188-195]

2002年,Wu等[196]基于气固液相生长机制,采用PLD与CVD复合的方法合成了具有周期性纵向异质结构的Si/SiGe单晶纳米线。首先,在850~950 ℃的反应温度下,使基底表面的Au薄膜与Si基体形成液态合金,并自发地分解成纳米尺度的液滴;随后采用激光烧蚀Ge靶材产生Ge蒸气,Ge蒸气和Si液滴都溶解在合金液滴中,并从固液界面析出SiGe合金,通过交替打开关闭激光器可得到Si/SiGe超晶格纳米线。2005年,Wu等[197]使用Nd∶YAG激光器,将PLD技术与CVD技术相结合,在Si基底上生长了沿{0001}方向取向的ZnS/CdSe核-壳纳米结构。与之相似,2011年,Choi等[198]设计了热辅助PLD系统,采用248 nm准分子激光器在热炉供热氛围中生长出毛刷状一维SnO2-ZnO异质结构,这种结构具有较大的比表面积,特别适宜应用于化学传感器领域。2005年,Hayden等[199]制备了多晶径向异质结构纳米线,该结构由p型Si芯和n型CdS壳组成,可被用来制作纳米发光二极管。2010年,Park等[200]采用静电纺丝和PLD相结合的方法制备了SnO2-ZnO复合纳米纤维,即先用静电纺丝法在Si基底上制备ZnO纳米纤维,然后用PLD法沉积SnO2,最后进行高温退火;对SnO2-ZnO复合纳米纤维结构进行研究后发现,该结构在200 ℃下对NO2气体浓度的响应非常高。

多数一维纳米异质节结构都需要通过复合两种或两种以上方法或步骤进行制备,用PLD一步合成一维纳米异质结构比较困难,但研究人员仍取得了一定突破。2008年,Huo等[201]在蓝宝石基底上用PLD直接生长了ZnO/Zn0.85Mg0.15O一维超晶格纳米针结构,研究后发现,ZnO缓冲层有助于提高超晶格的质量。本研究团队采用PLD技术,通过调控、限制表面扩散过程并利用几何阴影效应,成功地在Si基底上合成了一维CeO2/Y2O3超晶格纳米刷结构[121]。如图14所示,由于CeO2和Y2O3在{111}表面具有最低的表面能量,在热动力学非平衡条件下生长的纳米复合异质结构呈“人”字型。此方法为研究超高密度界面氧空位的形成以及开发高性能离子导体提供了新途径。

图 14. 一维CeO2/Y2O3纳米超晶格结构[121]。(a) STEM截面形貌图;(b)原子探针断层扫描重建一维CeO2/Y2O3纳米超晶格的三维结构

Fig. 14. One-dimensional CeO2/Y2O3 nanobrush superlattice[121]. (a) A STEM image showing its cross-sectional structure; (b) three-dimensional structure of one-dimensional CeO2/Y2O3 nano-superlattice reconstructed by atom probe tomography

下载图片 查看所有图片

4 结束语

PLD是一种被广泛应用的制备氧化物薄膜的方法,也是制备氧化物一维有序纳米结构的重要方法之一。本文综述了PLD制备一维有序纳米结构的方法和机理,并介绍了二元氧化物、多元氧化物及纳米异质结构的研究进展。最后,本文将讨论PLD制备一维有序纳米结构过程中纳米结构成形控制难题的解决思路,以及超快激光在该技术中的应用前景。

1)纳米结构成形控制

一维纳米结构在催化、光电转化、新能源、微电子器件等领域有着广阔的应用前景。但是一维纳米结构的性能和应用不仅取决于其化学组成,还与纳米结构的形貌特征(晶体取向、表面刻面、界面取向、界面成分、尺寸、密度等)密切相关。随着高新技术的发展,器件的高度集成和微小化对纳米结构的尺寸和形貌提出了更为苛刻的要求,需要通过控制纳米结构的尺寸和形貌对其性质进行优化。因此,一维纳米结构制备的一个重要目标就是获得有序、稳定性好、纳米结构形貌可控的纳米结构。根据不同的用途,寻找简单的方法,制备尺寸、形貌可控的一维纳米结构具有非常重要的意义。然而,迄今为止,制备可控晶体形态、取向和表面结构的纳米材料仍然是一个重大挑战。在一维有序纳米结构的PLD制备中,与制备参数相关的晶体成核以及生长过程是控制一维纳米结构尺寸和形貌的关键。因此,纳米结构的成形控制在很大程度上取决于对晶体生长机理和激光剥蚀等离子羽辉演化机理的进一步研究和深入了解。

在PLD纳米结构制备中,决定纳米结构成形的主要因素包括晶种相的选取、晶体生长的热力学和动力学控制、生长环境的调控。纳米结构成形是生长动力学和热力学之间的平衡,晶体生长形貌首先取决于晶体结构的对称性、结构基元间的作用力、晶格缺陷等。在PLD制备中,晶种相的选取可控制成核密度、成核晶向,对纳米结构成形密度、尺寸、取向的影响较大;通过对衬底与材料的晶格匹配性进行筛选,可有效利用晶体生长应力对成核初期的表面起伏进行控制,从而影响纳米结构成形密度、尺寸和晶体取向。对纳米结构成形控制的研究,不能局限于某一方面,既要注意到晶体结构因素,又要考虑到生长环境的影响(氧分压、衬底温度、等离子体相组成和杂质等对纳米结构成形具有较大影响)。其中,激光剥蚀等离子体中活性粒子的动能控制着生长表面的扩散过程,对一维纳米结构单元尺寸、纳米单元间距以及表面刻面调控具有重要影响。

2)超快激光PLD的发展

目前,纳秒脉冲激光器是PLD技术中采用的主流激光器。然而,纳秒PLD存在诸多缺点:首先,纳秒激光脉冲宽度长,激光束与靶材作用时间长,激光能量通过电子晶格耦合过程在靶材中形成热积累,对靶材质量造成不可逆的热损坏。同时,靶材表面的热积累导致激光作用区域内的靶材表面熔融,熔融液滴或靶材碎片会溅射到基板上。靶材的热损坏和液滴溅射都会严重影响所制备材料的质量(包括衬底附着性降低、表面微颗粒形成和化学计量比失配)。其次,纳秒脉冲激光在剥蚀高导热性和透明材料方面存在困难。因此,为了提高对宽禁带、透明、光吸收率低的材料的剥蚀效率,在PLD过程中通常采用波长为193 nm(ArF准分子激光)、248 nm(KrF准分子激光)和266 nm(Nd∶YAG固体激光器的四倍频输出)的紫外激光。

随着超快激光技术的快速发展,近年来,超快脉冲(皮秒或飞秒)激光被广泛应用于PLD技术中,用以克服传统纳秒PLD中存在的问题。已有人采用超短脉冲激光生长了新型材料,例如,具有高比例sp3[202]和高生长速率且无微米级液滴[203]的类金刚石碳膜。超短脉冲激光的两个显著特征是极高的峰值功率密度(高达1021 W/cm2)和极短的激光脉冲宽度(10-14~10-15 s)。超快激光与纳秒激光的电离机制完全不同。首先,超快激光的高峰值功率密度可引发多光子吸收过程,解决纳秒PLD中材料剥蚀率对光波长的依赖问题,实现同一波长的激光可剥蚀任意材料。以Si为例,超短脉冲激光的波长是800 nm,只稍稍高于Si的带隙宽度(1.12 eV),如果采用激光量子能量稍大于Si带隙宽度的连续激光束聚焦在Si表面,电子就会通过耦合声子的间接激发方式被激发到导带中,激光能量大部分转化为热能,剥蚀效率低;但是,如果采用超短脉冲激光,在其超强的峰值功率密度(大于1013 W/cm2)下,电子被激发到导带中,可以连续吸收第二个光子,从而诱导非线性雪崩电离过程,光吸收率随着激光能量密度增大呈指数增大。非线性吸收特性使得超短脉冲激光的吸收发生在靶材表面浅层区域,剥蚀精度高,可制备的材料种类广。其次,超短激光脉冲具有超窄的脉冲宽度(10-14~10-15 s),脉冲宽度小于电子-声子弛豫时间(几到几十皮秒),所以超短脉冲激光剥蚀对靶材的热影响小,在很大程度上避免了长脉宽、低强度纳秒脉冲激光造成的材料表面熔融和热损坏,大大提高了剥蚀精度。

除此之外,研究人员还发现超快激光PLD具有一个特殊的现象:在较低的激光通量下,超短脉冲激光的等离子体富含电子、高能离子和活性原子。但当激光通量很大时,纳米级粒子团簇会在超快激光剥蚀等离子体羽辉中自动形成,无需施加高压背景气体来诱导成核[204-206]。激光剥蚀等离子体羽辉中自发形成的纳米粒子是一维有序纳米结构成形的有利条件。如果可以在相对低的背景气压下制备功能氧化物一维有序纳米结构,就可以大大提高纳米结构材料的结晶质量。

参考文献

[1] Tawfick S H, Baughman R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.

[2] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letters, 2006, 6(2): 215-218.

[3] Wong S S, Joselevich E, Woolley A T, et al. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology[J]. Nature, 1998, 394(6688): 52-55.

[4] Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano Letters, 2005, 5(1): 191-195.

[5] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nature Materials, 2005, 4(6): 455-459.

[6] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.

[7] Xiang J, Lu W, Hu Y, et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors[J]. Nature, 2006, 441(7092): 489-493.

[8] Huang X H. El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.

[9] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564): 2425-2427.

[10] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods[J]. Angewandte Chemie International Edition, 2002, 41(7): 1188-1191.

[11] Pan Z W. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949.

[12] Fang X S, Bando Y, Liao M Y, et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors[J]. Advanced Materials, 2009, 21(20): 2034-2039.

[13] Wang Z L. Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology[J]. Annual Review of Physical Chemistry, 2004, 55: 159-196.

[14] Zhai TY, Yao JN. One-dimensional nanostructures[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.

[15] Yip C T, Huang H T, Zhou L M, et al. Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach[J]. Advanced Materials, 2011, 23(47): 5624-5628.

[16] Yang X C, Lu Y, Wang M T, et al. A photonic crystal fiber glucose sensor filled with silver nanowires[J]. Optics Communications, 2016, 359: 279-284.

[17] Pan Z W, Mahurin S M, Dai S, et al. Nanowire array gratings with ZnO combs[J]. Nano Letters, 2005, 5(4): 723-727.

[18] Li Z L, Zheng G X, He P A, et al. All-silicon nanorod-based Dammann gratings[J]. Optics Letters, 2015, 40(18): 4285-4288.

[19] Zhu X X, Li Q L, Ioannou D E, et al. Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells[J]. Nanotechnology, 2011, 22(25): 254020.

[20] Wei Z, Shen Y, Liu D, et al. Geometry-enhanced ultra-long TiO2 nanobelts in an all-vanadium photoelectrochemical cell for efficient storage of solar energy[J]. Nano Energy, 2016, 26: 200-207.

[21] Yang Z B, Bai S, Yue H W, et al. Germanium anode with lithiated-copper-oxide nanorods as an electronic-conductor for high-performance lithium-ion batteries[J]. Materials Letters, 2014, 136: 107-110.

[22] Yu L M, Zhu Y C, Liu Y L, et al. Ferroelectric perovskite oxide@TiO2 nanorod heterostructures: preparation, characterization, and application as a platform for photoelectrochemical bioanalysis[J]. Analytical Chemistry, 2018, 90(18): 10803-10811.

[23] DasR, Khan GG, Mandal K.Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material[C]∥ 2012Proceedings of 6th Joint European Magnetic Symposia (JEMS), Sep 09-14, 2012. Parma, Italy. 2012, 40: UNSP 15015.

[24] Yin Y W, Burton J D, Kim Y M, et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface[J]. Nature Materials, 2013, 12(5): 397-402.

[25] Walton A S, Gorzny M Ł, Bramble J P, et al. Photoelectric properties of electrodeposited copper(I) oxide nanowires[J]. Journal of the Electrochemical Society, 2009, 156(11): K191-K195.

[26] Morales J R, Amos N, Khizroev S, et al. Magneto-optical Faraday effect in nanocrystalline oxides[J]. Journal of Applied Physics, 2011, 109(9): 093110.

[27] ThekkayilR, JohnH, Gopinath P. Grafting of self assembled polyaniline nanorods on reduced graphene oxide for nonlinear optical application[J]. Synthetic Metals, 2013, 185/186: 38- 44.

[28] Liu Z B, Wang Y, Zhang X L, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Applied Physics Letters, 2009, 94(2): 021902.

[29] 李婉珍. 金纳米团簇薄膜的量子化充放电现象研究[D]. 杭州: 浙江大学, 2015.

    Li WZ. Quantised charging of gold nanoclusters film[D]. Hangzhou: Zhejiang University, 2015.

[30] Schmidt M. Kusche R, von Issendorff B, et al. Irregular variations in the melting point of size-selected atomic clusters[J]. Nature, 1998, 393(6682): 238-240.

[31] Schlexer P, Andersen A B, Sebok B, et al. Size-dependence of the melting temperature of individual Au nanoparticles[J]. Particle & Particle Systems Characterization, 2019, 36(3): 1800480.

[32] Choi S H, Wang K L, Leung M S, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadow mask[J]. Journal of Vacuum Science & Technology A, 2000, 18(4): 1326-1328.

[33] Wang J, Gudiksen M S, Duan X, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science, 2001, 293(5534): 1455-1457.

[34] Lee Y, Choi C H, Jang Y T, et al. Tungsten nanowires and their field electron emission properties[J]. Applied Physics Letters, 2002, 81(4): 745-747.

[35] Wang Y W, Wang G Z, Wang S X, et al. Fabrication and magnetic properties of highly ordered Co16Ag84 alloy nanowire array[J]. Applied Physics A, 2002, 74(4): 577-580.

[36] Yan B H, Zhou G, Duan W H, et al. Uniaxial-stress effects on electronic properties of silicon carbide nanowires[J]. Applied Physics Letters, 2006, 89(2): 023104.

[37] Jing L Q, Sun X J, Shang J, et al. Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J]. Solar Energy Materials and Solar Cells, 2003, 79(2): 133-151.

[38] Li P, Yao X, Gao F, et al. Preparation of aligned Ca3Co2O6 nanorods and their steplike magnetization[J]. Applied Physics Letters, 2007, 91(4): 042505.

[39] Lee H W, Lee K M, Lee S, et al. Ultrafast third-order optical nonlinearities of vertically-aligned ZnO nanorods[J]. Chemical Physics Letters, 2007, 447(1/2/3): 86-90.

[40] Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires[J]. Chemical Physics Letters, 2002, 365(3/4): 300-304.

[41] Liu Z, Li S, Yang Y, et al. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts[J]. Advanced Materials, 2003, 15(22): 1946-1948.

[42] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279(5348): 208-211.

[43] Wang X D, Li Z D, Shi J, et al. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts[J]. Chemical Reviews, 2014, 114(19): 9346-9384.

[44] Wan H, Ruda H E. A study of the growth mechanism of CVD-grown ZnO nanowires[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(10): 1014-1019.

[45] Bhaviripudi S, Mile E, Steiner S A, et al. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts[J]. Journal of the American Chemical Society, 2007, 129(6): 1516-1517.

[46] Horprathum M, Srichaiyaperk T, Samransuksamer B, et al. Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22051-22060.

[47] Horprathum M, Limwichean K, Wisitsoraat A, et al. NO 2-sending properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering[J]. Sensors and Actuators B, 2013, 176: 685-691.

[48] Tseng L T, Luo X, Tan T T, et al. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods[J]. Nanoscale Research Letters, 2014, 9(1): 1-10.

[49] Fang D, Huang K L, Liu S Q, et al. High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition[J]. Electrochemistry Communications, 2009, 11(4): 901-904.

[50] Liang H W, Liu S, Yu S H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates[J]. Advanced Materials, 2010, 22(35): 3925-3937.

[51] Rigout M L, Niu H J, Qin C L, et al. Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer[J]. Nanotechnology, 2008, 19(24): 245303.

[52] Rahm A, Lorenz M, Nobis T, et al. Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement[J]. Applied Physics A, 2007, 88(1): 31-34.

[53] Gao X S, Liu L F, Birajdar B, et al. High-density periodically ordered magnetic cobalt ferrite nanodot arrays by template-assisted pulsed laser deposition[J]. Advanced Functional Materials, 2009, 19(21): 3450-3455.

[54] Li L, Zhang X Q, Li L, et al. Magnetoresistance of single-crystalline La0.67Sr0.33MnO3/MgO nanorod arrays[J]. Solid State Communications, 2013, 171: 46-49.

[55] Dai Q L, Chen J J, Lu L Y, et al. Pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications[J]. Nano Letters, 2012, 12(8): 4187-4193.

[56] Nikov R G, Dikovska A O, Avdeev G V, et al. PLD fabrication of oriented nanowires in magnetic field[J]. Applied Surface Science, 2019, 471: 368-374.

[57] Sun Y, Fuge G M. Ashfold M N R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods[J]. Chemical Physics Letters, 2004, 396(1/2/3): 21-26.

[58] Casari C S, Giannuzzi C S, Russo V. Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas[J]. Carbon, 2016, 104: 190-195.

[59] 程勇, 陆益敏, 郭延龙, 等. 脉冲激光沉积功能薄膜的研究进展[J]. 激光与光电子学进展, 2015, 52(12): 120003.

    Cheng Y, Lu Y M, Guo Y L, et al. Development of function films prepared by pulsed laser deposition technology[J]. Laser & Optoelectronics Progress, 2015, 52(12): 120003.

[60] Ashfold M N R, Claeyssens F, Fuge G M, et al. Pulsed laser ablation and deposition of thin films[J]. Chemical Society Reviews, 2004, 33(1): 23-31.

[61] 宣天美, 尹桂林, 葛美英, 等. 纳米ZnO气敏传感器研究进展[J]. 材料导报, 2015, 29(1): 132-136.

    Xuan T M, Yin G L, Ge M Y, et al. Research progress on nano-ZnO gas sensors[J]. Materials Review, 2015, 29(1): 132-136.

[62] 周仕强, 卢清杰, 陈明鹏, 等. 微纳米结构In2O3气敏传感器研究进展[J]. 功能材料与器件学报, 2019, 25(2): 65-76.

    Zhou S Q, Lu Q J, Chen M P, et al. Research progress of micro/nano-structured In2O3 gas sensor[J]. Journal of Functional Materials and Devices, 2019, 25(2): 65-76.

[63] Ristoscu C, Cultrera L, Dima A, et al. SnO2 nanostructured films obtained by pulsed laser ablation deposition[J]. Applied Surface Science, 2005, 247(1/2/3/4): 95-100.

[64] 莫观孔, 刘家辉, 邹卓良, 等. 脉冲激光沉积法制备低阻掺镓氧化锌薄膜及其光电性能[J]. 中国激光, 2019, 46(10): 1003001.

    Mo G K, Liu J H, Zou Z L, et al. Preparation of low-resistivity GZO thin films using pulsed laser deposition and investigation of optoelectronic properties[J]. Chinese Journal of Lasers, 2019, 46(10): 1003001.

[65] 李学磊, 冯煜东, 王志民, 等. Al2O3薄膜的性能、制备与应用[J]. 真空, 2016, 53(3): 16-21.

    Li X L, Feng Y D, Wang Z M, et al. Properties, preparation and application of aluminium oxide thin films[J]. Vacuum, 2016, 53(3): 16-21.

[66] 邢晓, 王文军, 李淑红, 等. 脉冲激光沉积制备TiO2薄膜的性能[J]. 中国激光, 2013, 40(2): 0207001.

    Xing X, Wang W J, Li S H, et al. Properties of TiO2 films deposited by pulsed laser deposition[J]. Chinese Journal of Lasers, 2013, 40(2): 0207001.

[67] Okamoto K, Yamada T, Yasumoto J, et al. Influence of deposition conditions on self-assembled growth of Pb(Zr, Ti)O3 nanorods by pulsed laser deposition at elevated oxygen pressure[J]. Journal of the Ceramic Society of Japan, 2018, 126(5): 276-280.

[68] 童杏林, 罗梦泽, 姜德生, 等. GaN薄膜制备及脉冲激光沉积法的研究进展[J]. 激光杂志, 2006, 27(1): 5-7.

    Tong X L, Luo M Z, Jiang D S, et al. Research development on GaN films grown by laser deposition[J]. Laser Journal, 2006, 27(1): 5-7.

[69] 谢尚昇, 何欢, 符跃春. 脉冲激光沉积AlN薄膜的结构表征和性能研究进展[J]. 材料导报, 2010, 24(11): 45-49.

    Xie S S, He H, Fu Y C. Development of structural characterization and properties of AlN film prepared by pulsed laser deposition[J]. Materials Review, 2010, 24(11): 45-49.

[70] Grigoriev S N, Fominski V Y, Romanov R I, et al. Tribological properties of gradient Mo-Se-Ni-C thin films obtained by pulsed laser deposition in standard and shadow mask configurations[J]. Thin Solid Films, 2014, 556: 35-43.

[71] 梁立容, 魏爱香, 莫忠. 室温脉冲激光沉积法合成Bi3.95Er0.05Ti3O12薄膜及其介电性能研究[J]. 中国激光, 2018, 45(9): 0902002.

    Liang L R, Wei A X, Mo Z. Bi3.95Er0.05Ti3O12 thin films synthesized by pulsed laser deposition technique and their dielectric properties at room temperature[J]. Chinese Journal of Lasers, 2018, 45(9): 0902002.

[72] Garcia-Sanz F J, Mayor M B, Arias J L, et al. Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques[J]. Journal of Materials Science: Materials in Medicine, 1997, 8(12): 861-865.

[73] Clèries L. Fernández-Pradas J M, Morenza J L. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition[J]. Journal of Biomedical Materials Research, 2000, 49(1): 43-52.

[74] 邓泽超, 刘建东, 王旭, 等. 真空环境中脉冲激光烧蚀制备纳米银晶薄膜的生长特性[J]. 中国激光, 2019, 46(9): 0903003.

    Deng Z C, Liu J D, Wang X, et al. Growth characteristics of Ag nanocrystalline thin films prepared by pulsed laser ablation in vacuum[J]. Chinese Journal of Lasers, 2019, 46(9): 0903003.

[75] Gontad F, Caricato A P, Cesaria M, et al. Decoration of silica nanowires with gold nanoparticles through ultra-short pulsed laser deposition[J]. Applied Surface Science, 2017, 418: 430-436.

[76] Gonzalo J, Perea A, Babonneau D, et al. Competing processes during the production of metal nanoparticles by pulsed laser deposition[J]. Physical Review B, 2005, 71(12): 125420.

[77] Mahjouri-Samani M, Tian M, Puretzky A A, et al. Nonequilibrium synthesis of TiO2 nanoparticle “building blocks” for crystal growth by sequential attachment in pulsed laser deposition[J]. Nano Letters, 2017, 17(8): 4624-4633.

[78] Shkurmanov A, Sturm C, Franke H, et al. Low-temperature PLD-growth of ultrathin ZnO nanowires by using ZnxAl1-xO and ZnxGa1-xO seed layers[J]. Nanoscale Research Letters, 2017, 12: 134.

[79] Li H, Guan L L, Xu Z Q, et al. Synthesis and characterization of amorphous SiO2 nanowires via pulsed laser deposition accompanied by N2 annealing[J]. Applied Surface Science, 2016, 389: 705-712.

[80] Yang Q, Li Y L, Hu Z G, et al. Extended photo-response of ZnO/CdS core/shell nanorods fabricated by hydrothermal reaction and pulsed laser deposition[J]. Optics Express, 2014, 22(7): 8617-8623.

[81] Zhou Z, Nonnenmann S S. Progress in nanoporous templates: beyond anodic aluminum oxide and towards functional complex materials[J]. Materials, 2019, 12(16): 2535.

[82] Lee W, Han H, Lotnyk A, et al. Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch -2 density[J]. Nature Nanotechnology, 2008, 3(7): 402-407.

[83] Li L, Li Y, Gao S, et al. Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity[J]. Journal of Materials Chemistry, 2009, 19(44): 8366-8371.

[84] Tian G, Chen D Y, Yao J X, et al. BiFeO3 nanorings synthesized via AAO template-assisted pulsed laser deposition and ion beam etching[J]. RSC Advances, 2017, 7(65): 41210-41216.

[85] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 1999, 32(5): 435-445.

[86] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4(5): 89-90.

[87] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth[J]. Journal of the American Chemical Society, 2001, 123(13): 3165-3166.

[88] Kodambaka S, Tersoff J, Reuter M C, et al. Germanium nanowire growth below the eutectic temperature[J]. Science, 2007, 316(5825): 729-732.

[89] Barth S, Hernandez-Ramirez F, Holmes J D, et al. Synthesis and applications of one-dimensional semiconductors[J]. Progress in Materials Science, 2010, 55(6): 563-627.

[90] Dhungana D S, Hemeryck A, Sartori N, et al. Insight of surface treatments for CMOS compatibility of InAs nanowires[J]. Nano Research, 2019, 12(3): 581-586.

[91] Liu B, Hu Z D, Che Y, et al. Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition[J]. Applied Physics A, 2008, 93(3): 813-818.

[92] Yan M, Zhang H, Widjaja E J, et al. Self-assembly of well-aligned gallium-doped zinc oxide nanorods[J]. Journal of Applied Physics, 2003, 94(8): 5240-5246.

[93] Choopun S, Tabata H, Kawai T. Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere[J]. Journal of Crystal Growth, 2005, 274(1/2): 167-172.

[94] Wang B, Yang Y H, Xu N S, et al. Mechanisms of size-dependent shape evolution of one-dimensional nanostructure growth[J]. Physical Review B, 2006, 74(23): 235305.

[95] Yan Y G, Zhou L X, Zhang J, et al. Synthesis and growth discussion of one-dimensional MgO nanostructures: nanowires, nanobelts, and nanotubes in VLS mechanism[J]. Journal of Physical Chemistry C, 2008, 112(28): 10412-10417.

[96] Park S. Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles[J]. Materials Letters, 2019, 234: 315-318.

[97] Kaur N, Zappa D, Poli N, et al. Integration of VLS-grown WO3 nanowires into sensing devices for the detection of H2S and O3[J]. ACS Omega, 2019, 4(15): 16336-16343.

[98] Li M K, Wang D Z, Ding S, et al. Synthesis and properties of aligned ZnO microtube arrays[J]. Applied Surface Science, 2007, 253(9): 4161-4165.

[99] Yu K, Zhang Y, Luo L, et al. Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon[J]. Applied Physics A, 2004, 79(3): 443-446.

[100] Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature[J]. Applied Physics Letters, 2002, 81(19): 3648-3650.

[101] Gao P X, Ding Y, Wang Z L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst[J]. Nano Letters, 2003, 3(9): 1315-1320.

[102] Nobis T, Kaidashev E M, Rahm A, et al. Spatially inhomogeneous impurity distribution in ZnO micropillars[J]. Nano Letters, 2004, 4(5): 797-800.

[103] Lorenz M, Kaidashev E M, Rahm A, et al. MgxZn1-xO(0≤x≤0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition[J]. Applied Physics Letters, 2005, 86(14): 143113.

[104] Marcu A, Yanagida T, Nagashima K, et al. Effect of ablated particle flux on MgO nanowire growth by pulsed laser deposition[J]. Journal of Applied Physics, 2007, 102(1): 016102.

[105] Nagashima K, Yanagida T, Tanaka H, et al. Epitaxial growth of MgO nanowires by pulsed laser deposition[J]. Journal of Applied Physics, 2007, 101(12): 124304.

[106] Yanagida T, Nagashima K, Tanaka H, et al. Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition[J]. Journal of Applied Physics, 2008, 104(1): 016101.

[107] Kawakami M, Hartanto A B, Nakata Y, et al. Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition[J]. Japanese Journal of Applied Physics, 2003, 42: L33-L35.

[108] Senthil Kumar E, Chandran M, Bellarmine F, et al. Formation of one-dimensional ZnO nanowires from screw-dislocation-driven two-dimensional hexagonal stacking on diamond substrate using nanoparticle-assisted pulsed laser deposition[J]. Journal of Physics D, 2014, 47(3): 034016.

[109] Nakamura D, Shimogaki T, Nakao S, et al. Patterned growth of ZnO nanowalls by nanoparticle-assisted pulsed laser deposition[J]. Journal of Physics D, 2014, 47(3): 034014.

[110] Hartanto A B, Ning X, Nakata Y, et al. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume[J]. Applied Physics A, 2004, 78(3): 299-301.

[111] Karnati P, Haque A. Taufique M F N, et al. A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique[J]. Nanomaterials, 2018, 8(2): 62.

[112] Sun Y, Fuge G M. Ashfold M N R. Growth mechanisms for ZnO nanorods formed by pulsed laser deposition[J]. Superlattices and Microstructures, 2006, 39(1/2/3/4): 33-40.

[113] Liu Z, Ong C K, Yu T, et al. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties[J]. Applied Physics Letters, 2006, 88(5): 053110.

[114] Fuge G M. Holmes T M S, Ashfold M N R. Ultrathin aligned ZnO nanorod arrays grown by a novel diffusive pulsed laser deposition method[J]. Chemical Physics Letters, 2009, 479(1/2/3): 125-127.

[115] Tien L C, Pearton S J, Norton D P, et al. Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition[J]. Applied Physics A, 2008, 91(1): 29-32.

[116] Tan S S, Kee Y Y, Wong H Y, et al. Pulsed laser deposition of ITO nanorods in argon and OLED applications[J]. Surface and Coatings Technology, 2013, 231: 98-101.

[117] Lee D, Gao X, Fan L S, et al. Nonequilibrium synthesis of highly porous single-crystalline oxide nanostructures[J]. Advanced Materials Interfaces, 2017, 4(3): 1601034.

[118] Yang Y G, Johnson R A. Wadley H N G. A Monte Carlo simulation of the physical vapor deposition of nickel[J]. Acta Materialia, 1997, 45(4): 1455-1468.

[119] Fan L S, Gao X, Lee D, et al. Kinetically controlled fabrication of single-crystalline TiO2 nanobrush architectures with high energy {001} facets[J]. Advanced Science, 2017, 4(8): 1700045.

[120] Fan L, Gao X, Farmer T O, et al. Vertically aligned single-crystalline CoFe2O4 nanobrush architectures with high magnetization and tailored magnetic anisotropy[J]. Nanomaterials, 2020, 10(3): 472.

[121] Lee D, Gao X, Sun L, et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface[J]. Nature Communications, 2020, 11(1): 1371.

[122] Asaoka K, Ohno Y, Kishimoto S, et al. Ultranarrow luminescence lines from single quantum dots[J]. Physical Review Letters, 1995, 74(20): 4043-4046.

[123] Grosso D, Boissière C, Smarsly B, et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides[J]. Nature Materials, 2004, 3(11): 787-792.

[124] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures[J]. Science, 2004, 303(5658): 661-663.

[125] Zavaliche F, Zheng H, Mohaddes-Ardabili L, et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures[J]. Nano Letters, 2005, 5(9): 1793-1796.

[126] Zheng H M, Zhan Q, Zavaliche F, et al. Controlling self-assembled perovskite-spinel nanostructures[J]. Nano Letters, 2006, 6(7): 1401-1407.

[127] Teranishi R, Yasunaga S, Kai H, et al. Superconducting properties of ErBCO films with BaMO3 nanorods (M=Zr and Sn) by pulsed laser deposition[J]. Physica C, 2008, 468(15/16/17/18/19/20): 1522-1526.

[128] Ichinose A, Naoe K, Horide T, et al. Microstructures and critical current densities of YBCO films containing structure-controlled BaZrO3 nanorods[J]. Superconductor Science and Technology, 2007, 20(12): 1144-1150.

[129] Kim J H, Zhu K, Yan Y F, et al. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays[J]. Nano Letters, 2010, 10(10): 4099-4104.

[130] Gonzalez-Chavarri J, Parellada-Monreal L, Castro-Hurtado I, et al. ZnO nanoneedles grown on chip for selective NO2 detection indoors[J]. Sensors and Actuators B, 2018, 255: 1244-1253.

[131] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 2003, 15(5): 464-466.

[132] Park J A, Moon J, Lee S J, et al. Fabrication and characterization of ZnO nanofibers by electrospinning[J]. Current Applied Physics, 2009, 9(3): S210-S212.

[133] Choi K S, Chang S P. Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes[J]. Materials Letters, 2018, 230: 48-52.

[134] Shen G, Bando Y, Liu B, et al. Characterization and field-emission properties of vertically aligned ZnO nanonails and nanopencils fabricated by a modified thermal-evaporation process[J]. Advanced Functional Materials, 2006, 16(3): 410-416.

[135] Kaur M, Kailasaganapathi S, Ramgir N, et al. Gas dependent sensing mechanism in ZnO nanobelt sensor[J]. Applied Surface Science, 2017, 394: 258-266.

[136] Yang J, An S, Park W, et al. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition[J]. Advanced Materials, 2004, 16(18): 1661-1664.

[137] Tian S Q, Yang F, Zeng D W, et al. Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties[J]. Journal of Physical Chemistry C, 2012, 116(19): 10586-10591.

[138] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.

[139] Soci C, Zhang A, Xiang B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 2007, 7(4): 1003-1009.

[140] Zhang X M, Lu M Y, Zhang Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film[J]. Advanced Materials, 2009, 21(27): 2767-2770.

[141] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.

[142] Huang C Y, Ho Y, Hung C, et al. Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory[J]. IEEE Transactions on Electron Devices, 2014, 61(10): 3435-3441.

[143] Zhang Y F, Russo R E, Mao S S. Femtosecond laser assisted growth of ZnO nanowires[J]. Applied Physics Letters, 2005, 87(13): 133115.

[144] Yang Y, Feng Y, Zhu H, et al. Growth, structure, and cathodeluminescence of Eu-doped ZnO nanowires prepared by high-temperature and high-pressure pulsed-laser deposition[J]. Journal of Applied Physics, 2010, 107(5): 053502.

[145] Palani I A, Nakamura D, Okazaki K, et al. Influence of Sb as a catalyst in the growth of ZnO nano wires and nano sheets using nanoparticle assisted pulsed laser deposition (NAPLD)[J]. Materials Science and Engineering B, 2011, 176(18): 1526-1530.

[146] Premkumar T, Manoravi P, Panigrahi B K, et al. Particulate assisted growth of ZnO nanorods and microrods by pulsed laser deposition[J]. Applied Surface Science, 2009, 255(15): 6819-6822.

[147] Liu W, Xu H, Wang L, et al. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties[J]. AIP Advances, 2011, 1(2): 022145.

[148] Tien L C, Pearton S J, Norton D P, et al. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition[J]. Journal of Materials Science, 2008, 43(21): 6925-6932.

[149] Jo W, Lee J Y, Chun H. Titania nanotubes grown on carbon fibers for photocatalytic decomposition of gas-phase aromatic pollutants[J]. Materials, 2014, 7(3): 1801-1813.

[150] Ping G X, Wang C, Chen D, et al. Fabrication of self-organized TiO2 nanotube arrays for photocatalytic reduction of CO2[J]. Journal of Solid State Electrochemistry, 2013, 17(9): 2503-2510.

[151] AltomareM, PozziM, AllietaM, et al. and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity[J]. Applied CatalysisB, 2013, 136/137: 81- 88.

[152] Ohsaki Y, Masaki N, Kitamura T, et al. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization[J]. Physical Chemistry Chemical Physics, 2005, 7(24): 4157-4163.

[153] Rao H S, Wu W Q, Liu Y, et al. CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells[J]. Nano Energy, 2014, 8: 1-8.

[154] Fakharuddin A, Di Giacomo F, Palma A L, et al. Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules[J]. ACS Nano, 2015, 9(8): 8420-8429.

[155] Zhang Y Q, Fu Q, Xu Q L, et al. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries[J]. Nanoscale, 2015, 7(28): 12215-12224.

[156] Jiang S F, Yi B L, Zhang C K, et al. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 276: 80-88.

[157] Li Y, Fang X S, Koshizaki N, et al. Periodic TiO2 nanorod arrays with hexagonal nonclose-packed arrangements: excellent field emitters by parameter optimization[J]. Advanced Functional Materials, 2009, 19(15): 2467-2473.

[158] Nechache R, Nicklaus M, Diffalah N, et al. Pulsed laser deposition growth of rutile TiO2 nanowires on silicon substrates[J]. Applied Surface Science, 2014, 313: 48-52.

[159] Ma D Y, Shi G Y, Wang H Z, et al. Morphology-tailored synthesis of vertically aligned 1D WO3nano-structure films for highly enhanced electrochromic performance[J]. Journal of Materials Chemistry A, 2013, 1(3): 684-691.

[160] Li S T. Samy El-Shall M. Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles[J]. Nanostructured Materials, 1999, 12(1/2/3/4): 215-219.

[161] Shapovalov V I, Lapshin A E, Komlev A E, et al. Crystallization and thermochromism in tungsten oxide films annealed in vacuum[J]. Technical Physics Letters, 2012, 38(6): 555-558.

[162] Solis J L, Saukko S, Kish L, et al. Semiconductor gas sensors based on nanostructured tungsten oxide[J]. Thin Solid Films, 2001, 391(2): 255-260.

[163] Shibuya M, Miyauchi M. Efficient electrochemical reaction in hexagonal WO3 forests with a hierarchical nanostructure[J]. Chemical Physics Letters, 2009, 473(1/2/3): 126-130.

[164] Ou J, Yaacob M H, Campbell J L, et al. H2 sensing performance of optical fiber coated with nano-platelet WO3 film[J]. Sensors and Actuators B, 2012, 166: 1-6.

[165] Shirke Y M, Porel Mukherjee S. Selective synthesis of WO3and W18O49nanostructures: ligand-free pH-dependent morphology-controlled self-assembly of hierarchical architectures from 1D nanostructure and sunlight-driven photocatalytic degradation[J]. CrystEngComm, 2017, 19(15): 2096-2105.

[166] Huang K, Pan Q T, Yang F, et al. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries[J]. Journal of Physics D, 2008, 41(15): 155417.

[167] Zheng F, Xi C P, Xu J H, et al. Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2019, 772: 933-942.

[168] Huang P. Kalyar M M A, Webster R F, et al. Tungsten oxide nanorod growth by pulsed laser deposition: influence of substrate and process conditions[J]. Nanoscale, 2014, 6(22): 13586-13597.

[169] Ponzoni A, Russo V, Bailini A, et al. Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles[J]. Sensors and Actuators B, 2011, 153(2): 340-346.

[170] Ahmad M Z, Kang J H, Sadek A Z, et al. Synthesis of WO3 nanorod based thin films for ethanol and H2 sensing[J]. Procedia Engineering, 2012, 47: 358-361.

[171] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science, 2003, 299(5613): 1719-1722.

[172] Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006, 442(7104): 759-765.

[173] McCammon C. Perovskite as a possible sink for ferric iron in the lower mantle[J]. Nature, 1997, 387(6634): 694-696.

[174] Cuchiaro J D, McMillan L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes[J]. Nature, 1995, 374(6523): 627-629.

[175] Tuchiya T, Itoh T, Sasaki G, et al. Preparation and properties of piezoelectric lead zirconate titanate thin films for microsensors and microactuators by sol-gel processing[J]. Journal of the Ceramic Society of Japan, 1996, 104(1207): 159-163.

[176] Zhang Q, Whatmore R W. Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications[J]. Journal of Physics D, 2001, 34(15): 2296.

[177] Li J, Levin I, Slutsker J, et al. Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system[J]. Applied Physics Letters, 2005, 87(7): 072909.

[178] Tang X, Gao M, Luo H S, et al. Self-assembled patterned CoFe2O4-SrRuO3 electrodes: enhanced functional properties by polar nano-regions reorientation[J]. Journal of the American Ceramic Society, 2020, 103(6): 3726-3731.

[179] Chen Y Z, Liu T H, Chen C Y, et al. Taper PbZr0.2Ti0.8O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements[J]. ACS Nano, 2012, 6(3): 2826-2832.

[180] Nguyen M D, Houwman E P, Dekkers M, et al. Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically-aligned columnar grains[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9849-61.

[181] Xu J, Liu X H, Li Y D. Single crystalline YBa2Cu3O7-δ nanowires from a template-directed sol-gel route[J]. Materials Chemistry and Physics, 2004, 86(2/3): 409-413.

[182] Lai S H, Hsu Y C, Lan M D. Synthesis of Bi2Sr2CaCu2Oy nanowire and its superconductivity[J]. Solid State Communications, 2008, 148(9/10): 452-454.

[183] Hall S. Biomimetic synthesis of high-tc, type-II superconductor nanowires[J]. Advanced Materials, 2006, 18(4): 487-490.

[184] Greenberg Y, Lumelsky Y, Silverstein M S, et al. YBCO nanofibers synthesized by electrospinning a solution of poly(acrylic acid) and metal nitrates[J]. Journal of Materials Science, 2008, 43(5): 1664-1668.

[185] Schnepp Z A C, Wimbush S C, Mann S, et al. Structural evolution of superconductor nanowires in biopolymer gels[J]. Advanced Materials, 2008, 20(9): 1782-1786.

[186] Kargar M, Khoshnevisan B. The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x[J]. Modern Physics Letters B, 2016, 30(9): 1650148.

[187] Zhang Y F, Tang Y H, Duan X F, et al. Yttrium-Barium-copper-oxygen nanorods synthesized by laser ablation[J]. Chemical Physics Letters, 2000, 323(1/2): 180-184.

[188] 胡璐瑶, 金卫凤, 黎建麟, 等. 纳秒激光加工中脉冲能量对熔体体积的影响[J]. 表面技术, 2019, 48(8): 48-53.

    Hu L Y, Jin W F, Li J L, et al. Effects of pulse energy on melt volume in nanosecond pulsed laser processing[J]. Surface Technology, 2019, 48(8): 48-53.

[189] 刘奇, 董光能. 纳秒脉冲激光参数及激光路径填充方式对表面织构平坦化的影响[J]. 表面技术, 2019, 48(8): 23-28, 47.

    Liu Q, Dong G N. Effect of nanosecond pulsed laser parameters and texture machining methods on surface texture flattening[J]. Surface Technology, 2019, 48(8): 23-28, 47.

[190] Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872): 617-620.

[191] Zhang GQ, TakiguchiM, TatenoK, et al., 2019, 5(2): eaat8896.

[192] Hwang I S, Choi J K, Kim S J, et al. Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO[J]. Sensors and Actuators B, 2009, 142(1): 105-110.

[193] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016.

[194] Wu J, Ramsay A, Sanchez A, et al. Defect-free self-catalyzed GaAs/GaAsP nanowire quantum dots grown on silicon substrate[J]. Nano Letters, 2016, 16(1): 504-511.

[195] Koga T, Cronin S B, Dresselhaus M S, et al. Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices[J]. Applied Physics Letters, 2000, 77(10): 1490-1492.

[196] Wu Y Y, Fan R, Yang P D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires[J]. Nano Letters, 2002, 2(2): 83-86.

[197] Wu S J, Venugopal R, Chen Y T. Laser assisted catalytic growth of ZnS/CdSe core-shell and wire-coil nanowire heterostructures[J]. Journal of the Chinese Chemical Society, 2005, 52(4): 725-732.

[198] Choi J, Ji H, Tambunan O T, et al. Brush-shaped ZnO heteronanorods synthesized using thermal-assisted pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4682-4688.

[199] Hayden O, Greytak A, Bell D. Core-shell nanowire light-emitting diodes[J]. Advanced Materials, 2005, 17(6): 701-704.

[200] Park J A, Moon J, Lee S J, et al. SnO2-ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor[J]. Sensors and Actuators B, 2010, 145(1): 592-595.

[201] Huo B, Hu L, Zhang H, et al. ZnO/Zn0.85Mg0.15O superlattice nanoneedles grown by pulsed laser deposition[J]. Micro & Nano Letters, 2008, 3(4): 117-120.

[202] Qian F, Singh R K, Dutta S K, et al. Laser deposition of diamondlike carbon films at high intensities[J]. Applied Physics Letters, 1995, 67(21): 3120-3122.

[203] Banks P S, Feit M D, Rubenchik A M, et al. Material effects in ultra-short pulse laser drilling of metals[J]. Applied Physics A, 1999, 69(1): S377-S380.

[204] Eliezer S, Eliaz N, Grossman E, et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Physical Review B, 2004, 69(14): 144119.

[205] Amoruso S, Ausanio G, Bruzzese R, et al. Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum[J]. Physical Review B, 2005, 71(3): 033406.

[206] Liu B, Hu Z D, Che Y, et al. Nanoparticle generation in ultrafast pulsed laser ablation of nickel[J]. Applied Physics Letters, 2007, 90(4): 044103.

范丽莎, 张硕文, 张群莉, 姚建华. 脉冲激光沉积制备一维有序氧化物纳米结构的研究进展[J]. 激光与光电子学进展, 2020, 57(19): 190001. Lisha Fan, Shuowen Zhang, Qunli Zhang, Jianhua Yao. Research Progress on Fabrication of One-Dimensional Well-Ordered Oxide Nanostructures by Pulsed Laser Deposition[J]. Laser & Optoelectronics Progress, 2020, 57(19): 190001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!