Photonics Research, 2020, 8 (4): 04000468, Published Online: Mar. 18, 2020  

CMOS-compatible all-optical modulator based on the saturable absorption of graphene Download: 611次

Author Affiliations
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100038, China
3 e-mail: chizheung@hust.edu.cn
4 e-mail: lizhy@semi.ac.cn
Copy Citation Text

Hong Wang, Ningning Yang, Limin Chang, Chaobiao Zhou, Shiyu Li, Meng Deng, Zhenwei Li, Qiang Liu, Chi Zhang, Zhiyong Li, Yi Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene[J]. Photonics Research, 2020, 8(4): 04000468.

References

[1] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 2010, 4: 611-622.

[2] Q. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6: 3677-3694.

[3] Q. Bao, Z. Han, W. Yu, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, Y. T. Ding. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 2010, 19: 3077-3083.

[4] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[5] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474: 64-67.

[6] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, Y. R. Shen. Ultrafast all-optical graphene modulator. Nano Lett., 2014, 14: 955-959.

[7] Z. Sun, H. Chang. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano, 2014, 8: 4133-4156.

[8] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris. Ultrafast graphene photodetector. Nat. Nanotechnol., 2009, 4: 839-843.

[9] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 2013, 7: 883-887.

[10] X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics, 2013, 7: 888-891.

[11] T. Yang, H. Lin, B. Jia. Two-dimensional material functional devices enabled by direct laser fabrication. Front. Optoelectron., 2017, 11: 2-22.

[12] X. Wu, S. Yu, H. Yang, W. Li, X. Liu, L. Tong. Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon, 2016, 96: 1114-1119.

[13] Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, J. G. Tian. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Phys. Lett., 2013, 10: 065901.

[14] S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, L. Tong. Graphene decorated microfiber for ultrafast optical modulation. Opt. Express, 2015, 23: 10764-10770.

[15] S. Yu, X. Wu, K. Chen, B. Chen, X. Guo, D. Dai, L. Tong, W. Liu, Y. R. Shen. All-optical graphene modulator based on optical Kerr phase shift. Optica, 2016, 3: 541-544.

[16] H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, A. C. Peacock. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss. Sci. Rep., 2016, 6: 23512.

[17] R. Wang, D. Li, H. Wu, M. Jiang, Z. Sun, Y. Tian, J. Bai, Z. Ren. All-optical intensity modulator by polarization-dependent graphene-microfiber waveguide. IEEE Photonics J., 2017, 9: 7105708.

[18] C. Meng, S.-L. Yu, H.-Q. Wang, Y. Cao, L.-M. Tong, W.-T. Liu, Y.-R. Shen. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light Sci. Appl., 2015, 4: e348.

[19] X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, J. Zhao. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2: 468-471.

[20] Z. Jafari, A. Zarifkar, M. Miri, L. Zhang. All-optical modulation in a graphene-covered slotted silicon nano-beam cavity. J. Lightwave Technol., 2018, 36: 4051-4059.

[21] K. J. A. Ooi, P. C. Leong, L. K. Ang, D. T. H. Tan. All-optical control on a graphene-on-silicon waveguide modulator. Sci. Rep., 2017, 7: 12748.

[22] K.-J. Peng, C.-L. Wu, Y.-H. Lin, H.-Y. Wang, C.-H. Cheng, Y.-C. Chi, G.-R. Lin. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching. Nanophotonics, 2018, 7: 207-215.

[23] Z. Shi, L. Gan, T.-H. Xiao, H.-L. Guo, Z.-Y. Li. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2015, 2: 1513-1518.

[24] F. Sun, L. Xia, C. Nie, J. Shen, Y. Zou, G. Cheng, H. Wu, Y. Zhang, D. Wei, S. Yin, C. Du. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology, 2018, 29: 135201.

[25] F. Sun, L. Xia, C. Nie, C. Qiu, L. Tang, J. Shen, T. Sun, L. Yu, P. Wu, S. Yin, S. Yan, C. Du. An all-optical modulator based on a graphene-plasmonic slot waveguide at 1550 nm. Appl. Phys. Express, 2019, 12: 042009.

[26] R. Wang, D. Li, M. Jiang, H. Wu, X. Xu, Z. Ren. All-optical intensity modulation based on graphene-coated microfibre waveguides. Opt. Commun., 2018, 410: 604-608.

[27] P. Weis, J. L. Garcia-Pomar, M. Hoh, B. Reinhard, A. Brodyanski, M. Rahm. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano, 2012, 6: 9118-9124.

[28] Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, H. W. Zhang. Graphene based all-optical spatial terahertz modulator. Sci. Rep., 2014, 4: 7409.

[29] L. Yu, J. Zheng, Y. Xu, D. Dai, S. He. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8: 11386-11393.

[30] F. Zhou, W. Du. Ultrafast all-optical plasmonic graphene modulator. Appl. Opt., 2018, 57: 6645-6650.

[31] V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari, M. Romagnoli. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 2017, 12: 40-44.

[32] Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, Q. Gong. Ultrafast all-optical switching. Adv. Opt. Mater., 2017, 5: 1600665.

[33] OnoM.HataM.TsunekawaM.NozakiK.SumikuraH.NotomiM., “Ultrafast and energy-efficient all-optical modulator based on deep-subwavelength graphene-loaded plasmonic waveguides,” in Conference on Lasers & Electro-Optics (CLEO) (OSA, 2018), paper FF2L.4.

[34] L. Thylén, L. Wosinski. Integrated photonics in the 21st century. Photon. Res., 2014, 2: 75-81.

[35] Z. Zhou, B. Yin, Q. Deng, X. Li, J. Cui. Lowering the energy consumption in silicon photonic devices and systems [invited]. Photon. Res., 2015, 3: B28-B46.

[36] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, M. Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics, 2020, 14: 37-43.

[37] H. Cai, Y. Cheng, H. Zhang, Q. Huang, J. Xia, R. Barille, Y. Wang. Enhanced linear absorption coefficient of in-plane monolayer graphene on a silicon microring resonator. Opt. Express, 2016, 24: 24105-24116.

[38] P.-Y. Chen, A. Alù. Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011, 5: 5855-5863.

[39] L. A. Falkovsky, S. S. Pershoguba, L. A. Falkovsky, S. S. Pershoguba. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B, 2007, 76: 153410.

[40] Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, P. Kim. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett., 2007, 99: 246803.

[41] Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, T. B. Norris. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett., 2014, 104: 261909.

[42] G. Kovacevic, S. Yamashita. Waveguide design parameters impact on absorption in graphene coated silicon photonic integrated circuits. Opt. Express, 2016, 24: 3584-3591.

[43] D. Chatzidimitriou, A. Pitilakis, E. E. Kriezis. Rigorous calculation of nonlinear parameters in graphene-comprising waveguides. J. Appl. Phys., 2015, 118: 023105.

[44] V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater., 2008, 20: 4040-4043.

[45] Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, K. Yvind. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett., 2015, 15: 4393-4400.

[46] Y. Yang, Z. Xu, X. Jiang, Y. He, X. Guo, Y. Zhang, C. Qiu, Y. Su. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer. Photon. Res., 2018, 6: 965-970.

[47] J. Wang, L. Zhang, Y. Chen, Y. Geng, X. Hong, X. Li, Z. Cheng. Saturable absorption in graphene-on-waveguide devices. Appl. Phys. Express, 2019, 12: 032003.

[48] C. Zhou, G. Liu, G. Ban, S. Li, Q. Huang, J. Xia, Y. Wang, M. Zhan. Tunable Fano resonator using multilayer graphene in the near-infrared region. Appl. Phys. Lett., 2018, 112: 101904.

[49] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol., 2008, 3: 210-215.

[50] S. A. Claussen, E. Tasyurek, J. E. Roth, D. A. B. Miller. Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells. Opt. Express, 2010, 18: 25596-25607.

[51] X. Zhao, Z. Zheng, L. Liu, Q. Wang, H. Chen, J. Liu. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Opt. Express, 2012, 20: 25584-25589.

Hong Wang, Ningning Yang, Limin Chang, Chaobiao Zhou, Shiyu Li, Meng Deng, Zhenwei Li, Qiang Liu, Chi Zhang, Zhiyong Li, Yi Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene[J]. Photonics Research, 2020, 8(4): 04000468.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!