强激光与粒子束, 2019, 31 (6): 062001, 网络出版: 2019-06-17  

通过理论定标律研究激光间接驱动的参数空间

Parameter spaces of laser indirect-driven target by theoretic scaling laws
作者单位
1 北京应用物理与计算数学研究所, 北京 100088
2 中国工程物理研究院 研究生院, 北京 100088
3 北京大学 应用物理与技术研究中心, 北京 100871
引用该论文

杨宸, 范征锋, 刘杰, 张存波, 于承新, 任国利. 通过理论定标律研究激光间接驱动的参数空间[J]. 强激光与粒子束, 2019, 31(6): 062001.

Yang Chen, Fan Zhengfeng, Liu Jie, Zhang Cunbo, Yu Chengxin, Ren Guoli. Parameter spaces of laser indirect-driven target by theoretic scaling laws[J]. High Power Laser and Particle Beams, 2019, 31(6): 062001.

参考文献

[1] Pfalzner S.An introduction to inertial confinement fusion[M].New York: Taylor & Francis Group LLC, 2006.

[2] Atzeni S, Meyer-ter-Vehn J.The Physics of inertial Fusion[M].New York: Oxford University Press, 2004.

[3] Lindl J, Landen O, Edwards J, et al.Review of the national ignition campaign 2009-2012[J].Phys Plasmas, 2014,21: 020501.

[4] Betti R, Hurricane O A.Inertial-confinement fusion with lasers[J].Nat Phys, 2016,12(5): 435-448.

[5] Lindl J D, Amendt P, Berger R L, et al.The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J].Phys Plasmas, 2004,11: 339.

[6] Glenzer S H, Spears B K, Edwards M J, et al.First implosion experiments with cryogenic thermonuclear fuel on the National Ignition Facility[J].Plasma Phys Control Fusion, 2012,54: 045013.

[7] Moses E I, Boyd R N, Remington B A, et al.The National Ignition Facility: Ushering in a new age for high energy density science[J].Phys Plasmas, 2009,16: 041006.

[8] Le Pape S, Berzak Hopkins L F, Divol L, et al. Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility[J].Phys Rev Lett, 2018,120: 245003.

[9] 江少恩, 董云松, 黄天晅, 等.激光装置首次间接驱动内爆集成实验[J].强激光与粒子束, 2016,28: 080101.(Jiang Shaoen, Dong Yunsong, Huang Tianxuan,et al. Initial indirect-driven implosion integrated experiment on laser facility.High Power Laser and Particle Beams,2016,28: 080101)

[10] 李三伟, 杨冬, 李欣, 等.我国激光间接驱动黑腔物理实验研究进展[J].中国科学: 物理学力学 天文学, 2018,48: 065202.(Li Sanwei, Yang Dong, Li Xin, et al. Recent progress of hohlraum physics experiments in indirect driven ICF in China. Sci China Ser G-Phys Mech Astron, 2018,48: 065202)

[11] Regan S P, Epstein R, Hammel B A, et al.Hot-spot mix in ignition-scale implosions on the NIF[J].Phys Plasmas, 2012,19: 056307.

[12] Ma T, Patel P K, Izumi N, et al.Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions[J].Phys Rev Lett , 2013,111: 085004.

[13] Remington B A, Atherton L J, Benedetti L R, et al.Hydrodynamic instabilities and mix studies on NIF: Predictions, observations, and a path forward[J].J Phys Conf Ser , 2016,688: 012090.

[14] 于承新, 范征锋, 刘杰, 等.惯性约束聚变中内爆混合的模型构建[J].计算物理, 2017,34(4): 379-386.(Yu Chengxin,Fan Zhengfeng,Liu Jie,et al.Modeling of shell-mixing into central hotspot in inertial confinement fusion implosion. Chinese Journal of Computational Physics, 2017,34(4): 379-386)

[15] Martinez D A, Smalyuk V A, MacPhee A G, et al.Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility[J].Phys Plasmas, 2017,24: 102707.

[16] Clark D S, Kritcher A L, Yi S A, et al.Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators[J].Phys Plasmas, 2018,25: 032703.

[17] Marinak M M, Kerbel G D, Gentile N A, et al.Three-dimensional HYDRA simulations of National Ignition Facility targets[J].Phys Plasmas, 2001,8: 2275.

[18] 宋鹏, 翟传磊, 李双贵, 等.激光间接驱动惯性约束聚变二维总体程序-LARED集成程序[J].强激光与粒子束, 2015,27: 032007.(Song Peng, Zhai Chuanlei, Li Shuanggui,et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion. High Power Laser and Particle Beams, 2015,27: 032007)

[19] Saillard Y.Acceleration and deceleration model of indirect drive ICF capsules[J].Nucl Fusion, 2006,46(12): 1017-1035.

[20] Herrmann M C, Tabak M, Lindl J D.Ignition scaling laws and their application to capsule design[J].Phys Plasmas, 2001,8: 2296.

[21] Ramis R, Meyer-Ter-Vehn J.MULTI-IFE - A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J].Comput Phys Commun , 2016,203: 226-237.

[22] Olson R E, Rochau G A, Landen O L, et al.X-ray ablation rates in inertial confinement fusion capsule materials[J].Phys Plasmas, 2011,18: 032706.

[23] Lu Y, Fan Z, Lu X, et al.The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability[J].Phys Plasmas, 2017,24: 102705.

[24] Betti R, Goncharov V N, McCrory R L, et al.Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion[J].Phys Plasmas, 1998,5: 1446.

[25] Nora R, Betti R, Anderson K S, et al.Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility[J].Phys Plasmas, 2014,21: 056316.

[26] Betti R, Anderson K, Goncharov V N, et al.Deceleration phase of inertial confinement fusion implosions[J].Phys Plasmas, 2002,9: 2277.

[27] Kemp A, Meyer-ter-Vehn J, Atzeni S.Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets[J].Phys Rev Lett, 2001,86(15): 3336-3339.

[28] Hurricane O A, Callahan D A, Casey D T, et al.Fuel gain exceeding unity in an inertially confined fusion implosion[J].Nature, 2014,506: 7488.

[29] Haan S W, Lindl J D, Callahan D A, et al.Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J].Phys Plasmas, 2011,18: 051001.

杨宸, 范征锋, 刘杰, 张存波, 于承新, 任国利. 通过理论定标律研究激光间接驱动的参数空间[J]. 强激光与粒子束, 2019, 31(6): 062001. Yang Chen, Fan Zhengfeng, Liu Jie, Zhang Cunbo, Yu Chengxin, Ren Guoli. Parameter spaces of laser indirect-driven target by theoretic scaling laws[J]. High Power Laser and Particle Beams, 2019, 31(6): 062001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!