Photonics Research, 2019, 7 (2): 02000155, Published Online: Feb. 19, 2019  

Ultralow-crosstalk, strictly non-blocking microring-based optical switch Download: 501次

Author Affiliations
1 Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
2 Tyndall National Institute, University College Cork, Cork, Ireland
Copy Citation Text

Qixiang Cheng, Liang Yuan Dai, Nathan C. Abrams, Yu-Han Hung, Padraic E. Morrissey, Madeleine Glick, Peter O’Brien, Keren Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch[J]. Photonics Research, 2019, 7(2): 02000155.

References

[1] Q. Cheng, S. Rumley, M. Bahadori, K. Bergman. Photonic switching in high performance datacenters [Invited]. Opt. Express, 2018, 26: 16022-16043.

[2] J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, J. V. Gates. 1100 × 1100 port MEMS-based optical crossconnect with 4-dB maximum loss. IEEE Photon. Technol. Lett., 2003, 15: 1537-1539.

[3] KwonK.SeokT. J.HenrikssonJ.LuoJ.OchikuboL.JacobsJ.MullerR. S.WuM. C., “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics, San Jose, California, 2018 (Optical Society of America, 2018), paper SF1A.4.

[4] B. Robertson, H. Yang, M. M. Redmond, N. Collings, J. R. Moore, J. Liu, A. M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I. H. White, W. A. Crossland, D. P. Chu. Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch. J. Lightwave Technol., 2014, 32: 402-410.

[5] MulvadH. C. H.ParkerA.KingB.SmithD.KovacsM.JainS.HayesJ.PetrovichM.RichardsonD. J.ParsonsN., “Beam-steering all-optical switch for multi-core fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2C.4.

[6] ChengQ.WonferA.WeiJ. L.PentyR. V.WhiteI. H., “Low-energy, high-performance lossless 8 × 8 SOA switch,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper Th4E.6.

[7] R. Stabile, A. Albores-Mejia, K. A. Williams. Monolithic active-passive 16 × 16 optoelectronic switch. Opt. Lett., 2012, 37: 4666-4668.

[8] Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, I. H. White. Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation. Opt. Lett., 2014, 39: 1449-1452.

[9] SuzukiK.KonoikeR.HasegawaJ.SudaS.MatsuuraH.IkedaK.NamikiS.KawashimaH., “Low insertion loss and power efficient 32 × 32 silicon photonics switch with extremely-high-Δ PLC connector,” in Optical Fiber Communication Conference, San Diego, California, 2018 (Optical Society of America, 2018), paper Th4B.5.

[10] ChuT.QiaoL.TangW.GuoD.WuW., “Fast, high-radix silicon photonic switches,” in Optical Fiber Communications Conference and Exposition (OFC) (Optical Society of America, 2018), paper Th1J.4.

[11] L. Chen, Y.-K. Chen. Compact, low-loss and low-power 8 × 8 broadband silicon optical switch. Opt. Express, 2012, 20: 18977-18985.

[12] P. Dasmahapatra, R. Stabile, A. Rohit, K. A. Williams. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 5900410.

[13] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson. Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express, 2008, 16: 15915-15922.

[14] Z. Pan, S. Fu, L. Lu, D. Li, W. Chang, D. Liu, M. Zhang. On-chip cyclic-AWG-based 12 × 12 silicon wavelength routing switches with minimized port-to-port insertion loss fluctuation. Photon. Res., 2018, 6: 380-384.

[15] ChengQ.DingM.WonforA.WeiJ.PentyR. V.WhiteI. H., “The feasibility of building a 64 × 64 port count SOA-based optical switch,” in International Conference on Photonics in Switching (PS), Florence, Italy (2015), pp. 199201.

[16] A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. Lim, G. Lo, M. Hochberg. A 30  GHz silicon photonic platform. Proc. SPIE, 2013, 8781: 878107.

[17] M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, K. Bergman. Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform. J. Lightwave Technol., 2018, 36: 773-788.

[18] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435: 325-327.

[19] A. S. P. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. M. Saleh, J. E. Bowers, R. C. Alferness. On-chip wavelength locking for photonic switches. Opt. Lett., 2017, 42: 4934-4937.

[20] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol., 2014, 32: 505-512.

[21] C. Sun, M. Wade, M. Georgas, S. Lin, L. Alloatti, B. Moss, R. Kumar, A. H. Atabaki, F. Pavanello, J. M. Shainline, J. S. Orcutt, R. J. Ram, M. Popović, V. Stojanović. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits, 2016, 51: 893-907.

[22] ChengQ.DaiL. Y.BahadoriM.AbramsN. C.MorrisseyP. E.GlickM.O’BrienP.BergmanK., “Si/SiN microring-based optical router in switch-and-select topology,” in European Conference on Optical Communication (ECOC) (2018), paper We1C.3.

[23] M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, K. Bergman. Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature. J. Lightwave Technol., 2018, 36: 2767-2782.

[24] ChengQ.BahadoriM.RumleyS.BergmanK., “Highly-scalable, low-crosstalk architecture for ring-based optical space switch fabrics,” in IEEE Optical Interconnects Conference (OI) (2017), pp. 4142.

[25] L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, A. E. Willner. Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering. Opt. Express, 2005, 13: 5106-5115.

[26] RuzbarskyJ.TuranJ.OvsenikL., “Effects act on transmitted signal in a fully optical fiber WDM systems,” in IEEE 13th International Scientific Conference on Informatics (2015), pp. 217221.

[27] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, K. Bergman. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5: 1354-1370.

[28] W. D. Sacher, Y. Huang, G. Lo, J. K. S. Poon. Multilayer silicon nitride-on–silicon integrated photonic platforms and devices. J. Lightwave Technol., 2015, 33: 901-910.

[29] J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, J. E. Bowers. Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding. Opt. Express, 2011, 19: 24090-24101.

Qixiang Cheng, Liang Yuan Dai, Nathan C. Abrams, Yu-Han Hung, Padraic E. Morrissey, Madeleine Glick, Peter O’Brien, Keren Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch[J]. Photonics Research, 2019, 7(2): 02000155.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!