红外与毫米波学报, 2019, 38 (6): 716, 网络出版: 2019-12-27  

基于紧凑十字阵列的角度无关的宽带太赫兹带阻滤波器

An angle-independent broadband terahertz bandstop filter based on compact cross-shaped array
作者单位
School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 00044, China
引用该论文

宁玉鹏, 娄淑琴, 贾洪志, 刘锡丹, 孙璞. 基于紧凑十字阵列的角度无关的宽带太赫兹带阻滤波器[J]. 红外与毫米波学报, 2019, 38(6): 716.

Yu-Peng NING, Shu-Qin LOU, Hong-Zhi JIA, Xi-Dan LIU, Pu SUN. An angle-independent broadband terahertz bandstop filter based on compact cross-shaped array[J]. Journal of Infrared and Millimeter Waves, 2019, 38(6): 716.

参考文献

[1] NagatsumaT, DucournauG, RenaudC C. Advances in terahertz communications accelerated by photonics [J]. Nature Photonics, 2016, 10: 371-379.

[2] BarrosM T, MullinsR, BalasubramaniamS. Integrated terahertz communication with reflectors for 5G small-cell networks [J]. IEEE Transactions on Vehicular Technology, 2017, 667): 5647-5657.

[3] LiuH B, ZhongH, KarpowiczN, et al. Terahertz spectroscopy and imaging for defense and security applications [J]. Proceedings of the IEEE, 2017, 958): 1514-1527.

[4] SunY, SyM Y, WangY J, et al. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy [J]. World Journal of Radiology, 2011, 33): 55-65.

[5] YangX, ZhaoX, YangK, et al. Biomedical applications of terahertz spectroscopy and imaging [J]. Trends in Biotechnology, 2016, 3410): 810-824.

[6] KimS M, BaughmanW, WilbertD S, et al. High sensitivity and high selectivity terahertz biomedical imaging [J]. Chinese Optics Letters, 2011, 911): 110009.

[7] OhS J, KimS H, JeongK Y, et al. Measurement depth enhancement in terahertz imaging of biological tissues [J]. Optics Express, 2013, 2118): 21299-21305.

[8] DickieR, CahillR, FuscoV, et al. THz frequency selective surface filters for earth observation remote sensing instruments [J]. IEEE Transactions on Terahertz Science and Technology, 2011, 12): 450-461.

[9] VeselagoV G. The electrodynamics of substances with simultaneously negative values of and μ [J]. Soviet Physics Uspekhi , 1968, 104): 509-514.

[10] PendryJ B, HoldenA J, StewartW J, et al. Extremely low frequency plasmons in metallic mesostructures [J]. Physical Review Letters, 1996, 7625): 4773-4776.

[11] HusseinM, ZhouJ, HuangY, et al. Low-profile second-order terahertz bandpass frequency selective surface with sharp transitions: proceedings of 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies, 2017 [C]. UK, [s.n], 2017.

[12] ParkD J, ParkS J, YoonS A N, et al. Dielectric constant measurements of thin films and liquids using terahertz metamaterials [J]. RSC Advances, 2016, 673): 69381-69386.

[13] QiuK, JinJ, LiuZ, et al. A novel thermo-tunable band-stop filter employing a conductive rubber split-ring resonator [J]. Materials & Design, 2017, 11615): 309-315.

[14] EbrahimiA, NirantarS, Withayachumnanku, et al. Al-sarawi and derek abbott.second-order terahertz bandpass frequency selective surface with miniaturized elements [J]. IEEE Transactions on Terahertz Science and Technology, 2015, 55): 761-769.

[15] KayaS. Windmill-shaped subwavelength apertures operating in the mid-IR regime [J]. IEEE Transactions on Nanotechnology, 2014, 136): 1250-1256.

[16] DegironA, LezecH J, BarnesW L, et al. Effects of hole depth on enhanced light transmission through subwavelength hole arrays [J]. Applied Physics Letters, 2002, 8123): 4327-4329.

[17] J, HuangT, LiuP. Tunable polarization-independent terahertz band-stop filter based on graphene metasurface: proceedings of 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves, 2018 [C]. Japen, [s.n], 2018.

[18] ChiangY, YangC, YangY, et al. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial [J]. Applied Physics Letters, 2011, 9919): 191909.

[19] KhodaeeM, BanakermaniM, BaghbanH. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment [J]. Applied Optics, 2015, 5429): 8617-8624.

[20] Al-NaibI, BornN, KochM. Polarization and angle independent terahertz metamaterials with high Q-factors [J]. Applied Physics Letters, 2011, 989): 091107.

[21] FerraroA, ZografopoulosD C, CaputoR, et al. Angle-resolved and polarization-dependent investigation of cross-shaped frequency- selective surface terahertz filters [J]. Applied Physics Letters, 2017, 11014): 141107.

[22] QiL, LiC. Multi-band terahertz filter with independence to polarization and insensitivity to incidence angles [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 3611): 1137-1144.

[23] FranklinD, ChenY, Vazquez-GuardadoA, et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces [J]. Nature Communications, 2015, 6:7337.

[24] PendryJ B, Martin-MorenoL, Garcia-VidalF J. Mimicking surface plasmons with structured surfaces [J]. Science, 2004, 3055685): 847-848.

[25] ChaseS T, JosephR D. Resonant array bandpass filters for the far infrared [J]. Applied Optics, 1983, 2211): 1775-1779.

[26] GaoM, MohamadS, MomeniA, et al. A hybrid miniaturized-element frequency selective surface with a third-order bandpass response [J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 708-711.

[27] MunkB A. Frequency selective surfaces:Theory and design [M]. USA: John Wiley & Sons, Inc, 2009.

[28] PaulO, ImhofC, ReinhardB, et al. Negative index bulk metamaterial at terahertz frequencies [J]. Optics Express, 2008, 169): 6736-6744.

[29] FedotovV A, RoseM, ProsvirninS L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry [J]. Physical Review Letters, 2007, 9914): 147401.

[30] PapasimakisN, FedotovV A, ZheludevN I, et al. Metamaterial analog of electromagnetically induced transparency [J]. Physical Review Letters, 2008, 10125): 253903.

[31] LukyanovA, AndrienkoD. Extracting nondispersive charge carrier mobilities of organic semiconductors from simulation of small systems [J]. Physical Review B, 2010, 8219): 193202.

[32] LiX, YangL, HuC, et al. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency [J]. Optics Express, 2011, 196): 5283-5289.

[33] LuM, LiW, BrownE R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures [J]. Optics Letters, 2011, 367): 1071-1073.

[34] DeckerM, ZhaoR, SoukoulisC M, et al. Twisted split-ring-resonator photonic metamaterial with huge optical activity [J]. Optics Letters, 2010, 3510): 1593-1595.

宁玉鹏, 娄淑琴, 贾洪志, 刘锡丹, 孙璞. 基于紧凑十字阵列的角度无关的宽带太赫兹带阻滤波器[J]. 红外与毫米波学报, 2019, 38(6): 716. Yu-Peng NING, Shu-Qin LOU, Hong-Zhi JIA, Xi-Dan LIU, Pu SUN. An angle-independent broadband terahertz bandstop filter based on compact cross-shaped array[J]. Journal of Infrared and Millimeter Waves, 2019, 38(6): 716.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!