红外与激光工程, 2019, 48 (3): 0311002, 网络出版: 2019-04-06   

多激光波长在不同稀薄随机分布冰晶粒子层的散射特性

Scattering properties of different rarefied random distributed ice crystal particles with different laser wavelengths
作者单位
1 中车唐山机车车辆有限公司, 河北 唐山064000
2 中国北方车辆研究所, 北京 100072
3 安徽大学 电子与信息工程学院, 安徽 合肥 230039
引用该论文

王明军, 于记华, 刘雁翔, 高香香, 张华永. 多激光波长在不同稀薄随机分布冰晶粒子层的散射特性[J]. 红外与激光工程, 2019, 48(3): 0311002.

Wang Mingjun, Yu Jihua, Liu Yanxiang, Gao Xiangxiang, Zhang Huayong. Scattering properties of different rarefied random distributed ice crystal particles with different laser wavelengths[J]. Infrared and Laser Engineering, 2019, 48(3): 0311002.

参考文献

[1] Liou K N, Yang P. Light Scattering by Ice Crystals: Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2016.

[2] Feigelson E M. Radiation in A Cloudy Atmosphere[M]. Netherland: Springer, 1984.

[3] Yang P, Hong G, Dessler A E, et al. Contrails and induced cirrus: Optics and radiation[J]. Bulletin of the American Meteorological Society, 2010, 91(4): 473-478.

[4] Baran A J. From the single-scattering properties of ice crystals to climate prediction: A way forward[J]. Atmospheric Research, 2012, 112: 45-69.

[5] Liu Dong, Liu Qun, Bai Jian, et al. Data processing algorithms of the space-borne lidar CALIOP: A review[J]. Infrared and Laser Engineering, 2017, 46(12): 1202001. (in Chinese)

[6] Liao Zijun, Yang Chunping. Scattering properties of ice clouds in the visible light spectral region[J]. Optics & Optoelectronic Technology, 2011, 9(6): 25-28. (in Chinese)

[7] Zhao Yanjie, Wei Heli, Xu Qingshan, et al. Simulation of radiative properties of ice particles at 1.315 μm[J]. Infrared and Laser Engineering, 2009, 38(5): 782-786. (in Chinese)

[8] Yang P, Bi L, Baum B A, et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm[J]. Journals of the Atmospheric Sciences, 2013, 70(1): 330-347.

[9] Baum B A, Yang P, Heymsfield A J, et al. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2014, 146: 123-139.

[10] Bi L, Yang P. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 189: 228-237.

[11] Wang Mingjun, Li Yingle, Wu Zhensen, et al. Laser scattering statistical characteristics of moving particles with rarefied random distribution[J]. Infrared and Laser Engineering, 2011, 40(7): 1249-1253. (in Chinese)

[12] Ishimaru A. Wave Propagation and Scattering in Random Medium, Part I [M]. New York: Academic Press, 1978: 30-35.

[13] Tian L, Heymsfield G M, Heymsfield A J, et al. A study of cirrus ice particle size distribution using TC4 observations[J]. Journal of the Atmospheric Sciences, 2010, 67(1): 195-216.

[14] Emde C, Buras-Schnell R, Kylling A, et al. The libRadtran software package for radiative transfer calculations (version 2.0.1)[J]. Geoscientific Model Development, 2016, 9(5):1647-1672.

[15] Yi B, Yan P, Liu Q, et al. Improvements on the ice cloud modeling capabilities of the community radiative transfer model[J]. Journal of Geophysical Research, 2016, 121(22):1-14.

[16] Warren S G, Brandt R E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D14): 762-770.

王明军, 于记华, 刘雁翔, 高香香, 张华永. 多激光波长在不同稀薄随机分布冰晶粒子层的散射特性[J]. 红外与激光工程, 2019, 48(3): 0311002. Wang Mingjun, Yu Jihua, Liu Yanxiang, Gao Xiangxiang, Zhang Huayong. Scattering properties of different rarefied random distributed ice crystal particles with different laser wavelengths[J]. Infrared and Laser Engineering, 2019, 48(3): 0311002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!