激光与光电子学进展, 2018, 55 (3): 030002, 网络出版: 2018-09-10   

大口径空间主反射镜拼接化结构技术综述 下载: 1782次

Review on Splicing Structure Technology of Large Aperture Space Primary Mirror
作者单位
1 中国科学院西安光学精密机械研究所空间光学应用研究室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
引用该论文

李旭鹏, 石进峰, 王炜, 王永杰, 樊学武. 大口径空间主反射镜拼接化结构技术综述[J]. 激光与光电子学进展, 2018, 55(3): 030002.

Xupeng Li, Jinfeng Shi, Wei Wang, Yongjie Wang, Xuewu Fan. Review on Splicing Structure Technology of Large Aperture Space Primary Mirror[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030002.

参考文献

[1] Kendrick SE. Monolithic versus segmented primary mirror concepts for space telescopes[C].SPIE, 2009, 7426: 74260O.

[2] Nelson JE, Mast TS, Faber S M. The design of the Keck Observatory and Telescope[R]. Pasadena:Caltech, 1985. https: //authors. library.caltech.edu/37111/.

[3] NelsonJ. Segmented mirror telescopes[M] //Optics in Astrophysics. Springer Netherlands, 2006: 61- 72.

[4] National ResearchCouncil, Astronomy and Astrophysics Survey Commit, Board on Physics and Astronomy. Astronomy and astrophysics in the new millennium[M]. Washington D. C.: National Academy Press, 2001.

[5] PostmanM, ArgabrightV, ArnoldB, et al. Advanced technology large-aperture space telescope ( ATLAST) : a technology roadmap for the next decade[J]. arXiv preprint arXiv: 0904. 0941, 2009.

[6] Honneger B. NPS new home for giant segmented-mirror space telescope[EB/OL]. (2010-01). . http://www.nps.edu/About/News/NPS-New-Home-for-Giant-Segmented-Mirror-Space-Telescope-.html

[7] AgrawalB, KubbyJ. Applications of MEMS in segmented mirror space telescopes[C].SPIE, 2011, 7931: 793102.

[8] Agrawal BN, Kim JJ. Surface control of actuated hybrid space mirrors[C].Prague: 61th International Astronautical Congress, 2010.

[9] Maly JR, Yingling AJ, Griffin SF, et al. Vibration damping for the segmented mirror telescope[C]. SPIE, 2012, 8450: 845004.

[10] NASA's Goddard Space Flight Center. NASA's James Webb Space Telescope completes acoustic and vibrationtests[EB/OL]. ( 2017-03-28). https://www.nasa.gov/feature/goddard/2017/nasas-james-webb-space-telescope-completes-acoustic-and-vibration-tests

[11] Lightsey P A, Atkinson C B, Clampin M C, et al. James Webb Space Telescope: large deployable cryogenic telescope in space[J]. Optical Engineering, 2012, 51(1): 011003.

[12] Acton DS, Knight JS, ContosA, et al. Wavefront sensing and controls for the James Webb Space Telescope[C]. SPIE, 2012, 8442: 84422H.

[13] Chaney DM, Hadaway JB, Lewis JA. Cryogenic radius of curvature matching for the JWST primary mirror segments[C]. SPIE, 2009, 7439: 743916.

[14] WellsC, CoonM. Optomechanical integration and alignment verification of the James Webb Space Telescopes(JWST) optical telescope element[C].SPIE, 2009, 7433: 743303.

[15] Miller DW, MohanS, BudinoffJ. Assembly of a large modular optical telescope (ALMOST)[C].SPIE, 2008, 7010: 70102H.

[16] StollE, KwonD. The benefit of multimodal telepresence for in-space robotic assembly[C]. IASTED International Conference on Robotics & Applications, 2009: 664- 667.

[17] Sternberg DC. Development of an incremental and iterative risk reduction facility for robotic servicing and assembly missions[D]. Cambridge: Massachusetts Institute of Technology, 2014.

[18] Katz JG. Estimation and control of flexible space structures for autonomous on-orbit assembly[D]. Cambridge: Massachusetts Institute of Technology, 2009.

[19] PostmanM, Sparks WB, LiuF, et al. Using the ISS as a testbed to prepare for the next generation of space-based telescopes[C].SPIE, 2012, 8442: 84421T.

[20] Carpenter KG, EtemadS, Seery BD, et al. OpTIIX: An ISS-based testbed paving the roadmap toward a next generation large aperture UV/optical space telescope[R]. NASA Technical Reports Server, 2012.

[21] HickeyG, BarbeeT, EaleyM, et al. Actuated hybrid mirrors for space telescopes[C]. SPIE, 2010, 7731: 773120.

[22] Postman M, Brown T M, Sembach K R, et al. Advanced technology large-aperture space telescope: science drivers and technology developments[J]. Optical Engineering, 2012, 51(1): 011007.

[23] Feinberg L D, Budinoff J G. MacEwen H A, et al. Modular assembled space telescope[J]. Optical Engineering, 2013, 52(9): 091802.

[24] Lee N N, Burdick J W, Backes P, et al. Architecture for in-space robotic assembly of a modular space telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, 2(4): 041207.

[25] 王翔, 张广宇, 初昶波, 等. 空间大口径望远镜可展开镜片系统的概念设计[J]. 机械设计与研究, 2004, 20(6): 49-52.

    Wang X, Zhang G Y, Chu C B, et al. Conceptual design of expandable lens system for space large diameter telescope[J]. Machine Design and Research, 2004, 20(6): 49-52.

[26] 杨东武, 段宝岩, 仇原鹰. 空间可展开望远镜结构动力优化设计[J]. 中国机械工程, 2006, 17(s2): 241-245.

    Yang D W, Duan B Y, Qiu Y Y. Dynamics optimization design of a deployable space telescope structure[J]. China Mechanical Engineering, 2006, 17(s2): 241-245.

[27] 戴妍峰, 刘藻珍. 空间望远镜分块式主镜建模与面形控制方法[J]. 光学技术, 2006, 32(z1): 239-242.

    Dai Y F, Liu Z Z. Modeling and surface of segmented primary mirror for a space-based telescope[J]. Optical Technique, 2006, 32(z1): 239-242.

[28] 王臣臣, 邹刚毅, 庞志海, 等. 拼接主镜光学系统展开误差的分析[J]. 光学学报, 2016, 36(11): 1122005.

    Wang C C, Zou G Y, Pang Z H, et al. Analysis on deployment error of segmented mirror optical system[J]. Acta Optica Sinica, 2016, 36(11): 1122005.

[29] 李斌, 唐金龙, 于文豪, 等. 拼接误差对拼接镜成像质量的影响[J]. 激光与光电子学进展, 2017, 54(7): 071202.

    Li B, Tang J L, Yu W H, et al. Effect of segmented errors on image quality of segmented telescope[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071202.

[30] 雷存栋, 郑列华, 车英. 拼接式望远镜光学系统及其子镜失调误差仿真[J]. 激光与光电子学进展, 2015, 52(11): 112203.

    Lei C D, Zheng L Y, Che Y. Segmented telescope optical system and its maladjustment error analysis of aspheric sector-shaped sub-mirror[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112203.

[31] 宋家宝, 李国平. 大型光学望远镜扇形子镜拼接设计及仿真分析[J]. 天文研究与技术, 2010, 7(4): 355-361.

    Song J B, Li G P. Design and simulation of splicing of sector-shaped segments of a large optical telescope[J]. Astronomical Research & Technology, 2010, 7(4): 355-361.

[32] Ogilvie A, Allport J, Hannah M, et al. Autonomous robotic operations for on-orbit satellite servicing[J]. SPIE, 2008, 6958: 695809.

[33] HirzingerG, BrunnerB, DietrichJ. ROTEX-the first remotely controlled robot in space[C]. IEEE International Conference on Robotics and Automation, 1994: 2604- 2611.

[34] Keski-Kuha RA, SaifB, EegholmB, et al. Development of interferometry for testing the JWST Optical Telescope Element (OTE)[C]. SPIE, 2008, 7010: 70100R.

[35] MohanS. Reconfiguration methods for on-orbit servicing, assembly, and operations with application to space telescopes[D]. Cambridge: Massachusetts Institute of Technology, 2007.

[36] Acton DS, Atcheson PD, CermakM, et al. James Webb Space Telescope wavefront sensing and control algorithms[C]. SPIE, 2004, 5487: 887- 896.

[37] StreetmanS, KingsburyL. Cryogenic nano-positioner development and test for space applications[C]. SPIE, 2003, 4850: 274- 285.

[38] Burge JH, Angel J R P, Cuerden B, et al. Lightweight mirror technology using a thin facesheet with active rigid support[C]. SPIE, 1998, 3356: 690- 701.

[39] 阎绍泽, 吴德隆, 黄铁球, 等. 航天压电陶瓷微位移促动器设计与实验研究[J]. 导弹与航天运载技术, 1998, 236(6): 25-31.

    Yan S Z, Wu D L, Huang T Q, et al. Design and experiment for a piezo ceramic micro displacement actuator on spacecraft[J]. Missiles and Space Vehicles, 1998, 236(6): 25-31.

[40] 杨德华, 戚永军, 朱振东, 等. 光学拼接镜面微位移主动调节机构的设计和实测[J]. 光学精密工程, 2005, 13(2): 191-197.

    Yang D H, Qi Y J, Zhu Z D, et al. Design and test of the active micro-motion mechanism for optical mirror segment[J]. Optics and Precision Engineering, 2005, 13(2): 191-197.

李旭鹏, 石进峰, 王炜, 王永杰, 樊学武. 大口径空间主反射镜拼接化结构技术综述[J]. 激光与光电子学进展, 2018, 55(3): 030002. Xupeng Li, Jinfeng Shi, Wei Wang, Yongjie Wang, Xuewu Fan. Review on Splicing Structure Technology of Large Aperture Space Primary Mirror[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!