Photonics Research, 2018, 6 (6): 06000587, Published Online: Jul. 2, 2018  

Generation rate scaling: the quality factor optimization of microring resonators for photon-pair sources Download: 612次

Author Affiliations
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 Department of Photonics Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
3 Center of Material Science, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
Copy Citation Text

Kai Guo, Xiaodong Shi, Xiaolin Wang, Junbo Yang, Yunhong Ding, Haiyan Ou, Yijun Zhao. Generation rate scaling: the quality factor optimization of microring resonators for photon-pair sources[J]. Photonics Research, 2018, 6(6): 06000587.

References

[1] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409: 46-52.

[2] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 2007, 1: 165-171.

[3] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 1991, 67: 661-663.

[4] C. H. Bennett, G. Brassard, N. D. Mermin. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett., 1992, 68: 557-559.

[5] I. Ali-Khan, C. J. Broadbent, J. C. Howell. Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett., 2007, 98: 060503.

[6] X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, J. Pan. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett., 2016, 116: 020401.

[7] D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, S. Tanzilli. Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography. Laser Photon. Rev., 2016, 10: 451-457.

[8] X. Li, J. Chen, P. Voss, J. Sharping, P. Kumar. All-fiber photon-pair source for quantum communications: improved generation of correlated photons. Opt. Express, 2004, 12: 3737-3744.

[9] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 1995, 75: 4337-4341.

[10] S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, N. Gisin. Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett., 2001, 37: 26-28.

[11] S. D. Dyer, B. Baek, S. W. Nam. High-brightness, low-noise, all-fiber photon pair source. Opt. Express, 2009, 17: 10290-10297.

[12] J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, P. Kumar. Generation of correlated photons in nanoscale silicon waveguides. Opt. Express, 2006, 14: 12388-12393.

[13] K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S.-I. Itabashi. Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide. IEEE J. Sel. Top. Quantum Electron., 2010, 16: 325-331.

[14] K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, K. Rottwitt. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide. Appl. Phys. Express, 2017, 10: 062801.

[15] S. Clemmen, A. Perret, S. Selvaraja, W. Bogaerts, D. Van Thourhout, R. Baets, P. Emplit, S. Massar. Generation of correlated photons in hydrogenated amorphous-silicon waveguides. Opt. Lett., 2010, 35: 3483-3485.

[16] J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, I. A. Walmsley. On-chip low loss heralded source of pure single photons. Opt. Express, 2013, 21: 13522-13532.

[17] C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. Chae, D. Marpaung, A. Leinse, R. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, B. J. Eggleton. Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica, 2015, 2: 724-727.

[18] P. Kultavewuti, E. Y. Zhu, L. Qian, V. Pusino, M. Sorel, J. S. Aitchison. Correlated photon pair generation in ALGaAs nanowaveguides via spontaneous four-wave mixing. Opt. Express, 2016, 24: 3365-3376.

[19] M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun., 2010, 283: 3678-3682.

[20] Y. Ding, H. Ou, C. Peucheret. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals. Opt. Lett., 2013, 38: 2732-2734.

[21] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 2010, 4: 535-544.

[22] N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, C. Galland. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X, 2014, 4: 041047.

[23] J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, M. G. Thompson. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica, 2016, 3: 407-413.

[24] I. A. Walmsley, M. G. Raymer. Toward quantum-information processing with photons. Science, 2005, 307: 1733-1734.

[25] K. N. Cassemiro, K. Laiho, C. Silberhorn. Accessing the purity of a single photon by the width of the Hong–Ou–Mandel interference. New J. Phys., 2010, 12: 113052.

[26] W. Tittel, J. Brendel, N. Gisin, H. Zbinden. Long-distance Bell-type tests using energy-time entangled photons. Phys. Rev. A, 1999, 59: 4150-4163.

[27] D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, D. Bajoni. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2: 88-94.

[28] S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, Q. Lin. High visibility time-energy entangled photons from a silicon nanophotonic chip. ACS Photon., 2016, 3: 1754-1761.

[29] C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, R. Morandotti. Integrated frequency comb source of heralded single photons. Opt. Express, 2014, 22: 6535-6546.

[30] F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, S. Tanzilli. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Opt. Express, 2016, 24: 28731-28738.

[31] J. M. Arrazola, V. Scarani. Covert quantum communication. Phys. Rev. Lett., 2016, 117: 250503.

[32] B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, S. Guha. Quantum-secure covert communication on bosonic channels. Nat. Commun., 2015, 6: 8626.

[33] A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. De Rossi, S. Combrié, C. Xiong, B. J. Eggleton. Heralded single-photon source in a III-V photonic crystal. Opt. Lett., 2013, 38: 649-651.

[34] S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express, 2009, 17: 16558-16570.

[35] S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. Helt, J. Sipe, M. Liscidini, M. Galli, D. Bajoni. Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express, 2012, 20: 23100-23107.

[36] K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, Y.-P. Huang. Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides. Opt. Lett., 2014, 39: 914-917.

[37] E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson. Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Opt. Express, 2012, 21: 27826-27834.

[38] Y. Guo, W. Zhang, S. Dong, Y. Huang, J. Peng. Telecom-band degenerate-frequency photon pair generation in silicon microring cavities. Opt. Lett., 2014, 39: 2526-2529.

[39] R. Wakabayashi, M. Fujiwara, K.-I. Yoshino, Y. Nambu, M. Sasaki, T. Aoki. Time-bin entangled photon pair generation from si micro-ring resonator. Opt. Express, 2015, 23: 1103-1113.

[40] Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, J. Peng. The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation. Opt. Express, 2014, 22: 2620-2631.

[41] S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. Helt, J. Sipe, M. Liscidini, D. Bajoni. From classical four-wave mixing to parametric fluorescence in silicon microring resonators. Opt. Lett., 2012, 37: 3807-3809.

[42] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 2012, 6: 47-73.

[43] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 1997, 15: 998-1005.

[44] L. Helt, Z. Yang, M. Liscidini, J. Sipe. Spontaneous four-wave mixing in microring resonators. Opt. Lett., 2010, 35: 3006-3008.

[45] L. G. Helt, M. Liscidini, J. E. Sipe. How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices. J. Opt. Soc. Am. B, 2012, 29: 2199-2212.

[46] Z. Vernon, M. Liscidini, J. Sipe. No free lunch: the trade-off between heralding rate and efficiency in microresonator-based heralded single photon sources. Opt. Lett., 2016, 41: 788-791.

[47] SoltaniM., “Novel integrated silicon nanophotonic structures using ultra-high Q resonators,” Ph.D. thesis (Georgia Institute of Technology, 2009).

[48] A. B. Fallahkhair, K. S. Li, T. E. Murphy. Vector finite difference modesolver for anisotropic dielectric waveguides. J. Lightwave Technol., 2008, 26: 1423-1431.

[49] K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, K. Rottwitt. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides. Opt. Lett., 2017, 42: 3670-3673.

[50] Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, V. N. Astratov. Spectrally resolved resonant propulsion of dielectric microspheres. Laser Photon. Rev., 2015, 9: 263-273.

[51] H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, D. Hak. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide. Appl. Phys. Lett., 2004, 85: 2196-2198.

[52] D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, B. Jalali. Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides. Appl. Phys. Lett., 2005, 86: 071115.

[53] X. Lu, W. C. Jiang, J. Zhang, Q. Lin. Biphoton statistics of quantum light generated on a silicon chip. ACS Photon., 2016, 3: 1626-1636.

[54] W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin. Silicon-chip source of bright photon pairs. Opt. Express, 2015, 23: 20884-20904.

[55] B. Korzh, N. Walenta, T. Lunghi, N. Gisin, H. Zbinden. Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency. Appl. Phys. Lett., 2014, 104: 081108.

[56] L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, A. J. Shields. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm. J. Appl. Phys., 2015, 117: 083109.

[57] Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, Q. Gong. Tunneling-induced transparency in a chaotic microcavity. Laser Photon. Rev., 2013, 7: L51-L54.

[58] X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, Y. F. Xiao. Whispering–gallery microcavities with unidirectional laser emission. Laser Photon. Rev., 2016, 10: 40-61.

[59] Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, S. N. Chormaic. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Opt. Lett., 2016, 41: 5266-5269.

[60] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 2000, 85: 74-77.

[61] X. F. Jiang, Y. F. Xiao, Q. F. Yang, L. Shao. Free-space coupled, ultralow-threshold raman lasing from a silica microcavity. Appl. Phys. Lett., 2013, 103: 101102.

[62] X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y. F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358: 344-347.

[63] X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, Q. Gong. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv. Mater., 2012, 24: OP260-OP264.

Kai Guo, Xiaodong Shi, Xiaolin Wang, Junbo Yang, Yunhong Ding, Haiyan Ou, Yijun Zhao. Generation rate scaling: the quality factor optimization of microring resonators for photon-pair sources[J]. Photonics Research, 2018, 6(6): 06000587.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!