Advanced Photonics, 2020, 2 (4): 044001, Published Online: Jul. 27, 2020   

Recent advances in optoelectronic oscillators Download: 1124次

Author Affiliations
1 Chinese Academy of Sciences, Institute of Semiconductors, State Key Laboratory on Integrated Optoelectronics, Beijing, China
2 University of Chinese Academy of Sciences, School of Electronic, Electrical, and Communication Engineering, Beijing, China
3 University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
4 Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communications, Beijing, China
5 Universitat Politécnica de Valencia, ITEAM Research Institute, Photonics Research Labs, Valencia, Spain
6 University of Ottawa, Microwave Photonics Research Laboratory, Ottawa, Ontario, Canada
Copy Citation Text

Tengfei Hao, Yanzhong Liu, Jian Tang, Qizhuang Cen, Wei Li, Ninghua Zhu, Yitang Dai, José Capmany, Jianping Yao, Ming Li. Recent advances in optoelectronic oscillators[J]. Advanced Photonics, 2020, 2(4): 044001.

References

[1] L. Maleki. The optoelectronic oscillator. Nat. Photonics, 2011, 5: 728-730.

[2] X. S. Yao, L. Maleki. Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron., 1996, 32(7): 1141-1149.

[3] X. S. Yao, L. Maleki. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B, 1996, 13(8): 1725-1735.

[4] D.Eliyahu, D.Seidel and L.Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in IEEE Int. Freq. Control Symp., Honolulu, Hawaii (2008).

[5] A. Matsko, et al.. Whispering gallery mode based optoelectronic microwave oscillator. J. Mod. Opt., 2003, 50(15–17): 2523-2542.

[6] K. Volyanskiy, et al.. Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation. Opt. Express, 2010, 18(21): 22358-22363.

[7] X. S. Yao, L. Maleki. Dual microwave and optical oscillator. Opt. Lett., 1997, 22(24): 1867-1869.

[8] X. S.Yaoet al., “Dual-loop optoelectronic oscillator,” in Proc. IEEE Int. Freq. Control Symp. FCS ’98, pp. 545549 (1998).

[9] D.Eliyahu and L.Maleki, “Tunable, ultralow phase noise YIG based optoelectronic oscillator,” in Proc. IEEE MTT-S Int. Microwave Symp. Digest, Vol. 3, pp. 21852187 (2003).

[10] L. Huo, et al.. Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation. IEEE Photonics Technol. Lett., 2003, 15(7): 981-983.

[11] W. Zhou, G. Blasche. Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level. IEEE Trans. Microwave Theory Tech., 2005, 53(3): 929-933.

[12] T.Sakamoto, T.Kawanishi and M.Izutsu, “Optoelectronic oscillator using push-pull Mach–Zehnder modulator biased at null point for optical two-tone signal generation,” in Proc. Conf. Lasers Electro-Opt., Baltimore, Maryland, pp. 877879 (2005).

[13] T. Sakamoto, T. Kawanishi, M. Izutsu. Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation. Opt. Lett., 2006, 31(6): 811-813.

[14] Y. K. Chembo, et al.. Dynamic instabilities of microwaves generated with optoelectronic oscillators. Opt. Lett., 2007, 32(17): 2571-2573.

[15] V. J. Urick, et al.. Channelisation of radio-frequency signals using optoelectronic oscillator. Electron. Lett., 2009, 45(24): 1242-1244.

[16] L. D. Nguyen, K. Nakatani, B. Journet. Refractive index measurement by using an optoelectronic oscillator. IEEE Photonics Technol. Lett., 2010, 22(12): 857-859.

[17] D. Zhu, S. Pan, D. Ben. Tunable frequency-quadrupling dual-loop optoelectronic oscillator. IEEE Photonics Technol. Lett., 2012, 24(3): 194-196.

[18] M.Liet al., “Femtometer-resolution wavelength interrogation using an optoelectronic oscillator,” in Proc. IEEE Photonics Conf., Burlingame, California, pp. 298299 (2012).

[19] W. Li, F. Kong, J. Yao. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator. J. Lightwave Technol., 2013, 31(23): 3780-3786.

[20] T. Hao, et al.. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun., 2018, 9: 1839.

[21] Y. Liu, et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl., 2018, 7(1): 38.

[22] J. Zhang, J. P. Yao. Parity-time symmetric optoelectronic oscillator. Sci. Adv., 2018, 4(6): eaar6782.

[23] J.Tanget al., “An integrated optoelectronic oscillator,” in Int. Top. Meeting Microwave Photonics (MWP), Beijing, pp. 14 (2017).

[24] W.Zhang and J. P.Yao, “A silicon photonic integrated frequency-tunable optoelectronic oscillator,” in Int. Top. Meeting Microwave Photonics (MWP), Beijing, pp. 14 (2017).

[25] X. S. Yao, L. Davis, L. Maleki. Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Lightwave Technol., 2000, 18(1): 73-78.

[26] J. Lasri, et al.. Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (100 GHz or higher) optical pulses. Opt. Exp., 2003, 11(12): 1430-1435.

[27] D. Dahan, E. Shumakher, G. Eisenstein. Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators with all intracavity fiber parametric amplifier. Opt. Lett., 2005, 30(13): 1623-1625.

[28] C. Williams, et al.. Noise characterization of an injection-locked COEO with long-term stabilization. J. Lightwave Technol., 2011, 29(19): 2906-2912.

[29] X. S. Yao, L. Maleki. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron., 2000, 36(1): 79-84.

[30] T. Bánky, B. Horváth, T. Berceli. Optimum configuration of multiloop optoelectronic oscillators. J. Opt. Soc. Am. B, 2006, 23(7): 1371-1380.

[31] T. Berceli, T. Bánky, B. Horváth. Opto-electronic generation of stable and low noise microwave signals. IEE Proc. Optoelectron., 2006, 153(3): 119-127.

[32] J. Yang, et al.. An optical domain combined dual-loop optoelectronic oscillator. IEEE Photonics Technol. Lett., 2007, 19(11): 807-809.

[33] E. Shumakher, G. Eisenstein. A novel multiloop optoelectronic oscillator. IEEE Photonics Technol. Lett., 2008, 20(22): 1881-1883.

[34] X. Liu, et al.. A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines. Opt. Express, 2012, 20(12): 13296-13301.

[35] S. Jia, et al.. A novel optoelectronic oscillator based on wavelength multiplexing. IEEE Photonics Technol. Lett., 2014, 27(2): 213-216.

[36] K. H. Lee, J. Y. Kim, W. Y. Choi. Injection-locked hybrid optoelectronic oscillators for single-mode oscillation. IEEE Photonics Technol. Lett., 2008, 20(19): 1645-1647.

[37] Z. Q. Fan, et al.. Tunable low-drift spurious-free optoelectronic oscillator based on injection locking and time delay compensation. Opt. Lett., 2019, 44(3): 534-537.

[38] E. Shumakher, S. Ó Dúill, G. Eisenstein. Optoelectronic oscillator tunable by an SOA based slow light element. J. Lightwave Technol., 2009, 27(18): 4063-4068.

[39] S. Pan, J. P. Yao. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry–Perot laser diode with external optical injection. Opt. Lett., 2010, 35(11): 1911-1913.

[40] W. Li, J. P. Yao. An optically tunable optoelectronic oscillator. J. Lightwave Technol., 2010, 28(18): 2640-2645.

[41] M. Li, W. Li, J. P. Yao. Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter. IEEE Photonics Technol. Lett., 2012, 24(14): 1251-1253.

[42] Z. Tang, et al.. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG. IEEE Photonics Technol. Lett., 2012, 24(17): 1487-1489.

[43] W. Li, J. P. Yao. Wideband frequency-tunable optoelectronic oscillator incorporating a tunable microwave-photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber-Bragg grating. IEEE Trans. Microwave Theory Tech., 2012, 60(6): 1735-1742.

[44] B. Yang, et al.. A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser. IEEE Photonics Technol. Lett., 2012, 24(1): 73-75.

[45] F. Jiang, et al.. An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter. Opt. Express, 2013, 21(14): 16381-16389.

[46] X. Xie, et al.. Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter. Opt. Lett., 2013, 38(5): 655-657.

[47] H. Peng, et al.. Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering. J. Lightwave Technol., 2015, 33(13): 2707-2715.

[48] H. Peng, et al.. Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering. Opt. Express, 2017, 25(9): 10287-10305.

[49] H. T. Tang, et al.. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultranarrow passband. Opt. Lett., 2018, 43(10): 2328-2331.

[50] M. Y. Shi, et al.. Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering. Opt. Express, 2018, 26(13): 16113-16124.

[51] Z. Zeng, et al.. Stable and finely tunable optoelectronic oscillator based on stimulated Brillouin scattering and an electro-optic frequency shift. Appl. Opt., 2020, 59(3): 589-594.

[52] M. Shin, V. S. Grigoryan, P. Kumar. Frequency-doubling optoelectronic oscillator for generating high-frequency microwave signals with low phase noise. Electron. Lett., 2007, 43(4): 242-244.

[53] S. L. Pan, J. P. Yao. A frequency-doubling optoelectronic oscillator using a polarization modulator. IEEE Photonics Technol. Lett., 2009, 21(13): 929-931.

[54] L. X. Wang, et al.. A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating. IEEE Photonics Technol. Lett., 2011, 23(22): 1688-1690.

[55] W. Li, J. P. Yao. An optically tunable frequency-multiplying optoelectronic oscillator. IEEE Photonics Technol. Lett., 2012, 24(10): 812-814.

[56] X. Liu, et al.. Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering. IEEE Photonics J., 2013, 5(2): 6600606.

[57] W. Li, J. G. Liu, N. H. Zhu. A widely and continuously tunable frequency doubling optoelectronic oscillator. IEEE Photonics Technol. Lett., 2015, 27(13): 1461-1464.

[58] C. Li, et al.. Frequency-sextupling optoelectronic oscillator using a Mach–Zehnder interferometer and a FBG. IEEE Photonics Technol. Lett., 2016, 28(12): 1356-1359.

[59] Y. K. Chembo, L. Larger, P. Colet. Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators. IEEE J. Quantum Electron., 2008, 44(9): 858-866.

[60] M. Peil, et al.. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E, 2009, 79: 026208.

[61] K. Callan, et al.. Broadband chaos generated by an opto-electronic oscillator. Phys. Rev. Lett., 2010, 104(11): 113901.

[62] B. Romeira, et al.. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter. J. Lightwave Technol., 2014, 32(20): 3933-3942.

[63] Y. K. Chembo, et al.. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys., 2019, 91: 035006.

[64] J. Lasri, et al.. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals. IEEE Photonics Technol. Lett., 2002, 14(7): 1004-1006.

[65] P. Devgan, et al.. An optoelectronic oscillator using an 850-nm VCSEL for generating low jitter optical pulses. IEEE Photonics Technol. Lett., 2006, 18(5): 685-687.

[66] Y. K. Chembo, et al.. Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression. J. Lightwave Technol., 2009, 27(22): 5160-5167.

[67] N. Huang, et al.. Optical pulse generation based on an optoelectronic oscillator with cascaded nonlinear semiconductor optical amplifiers. IEEE Photonics J., 2014, 6(1): 5500208.

[68] P. Zhou, et al.. Optical pulse generation by an optoelectronic oscillator with optically injected semiconductor laser. IEEE Photonics. Technol. Lett., 2016, 28(17): 1827-1830.

[69] W. Li, et al.. Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer. IEEE Photonics J., 2014, 6(2): 7900908.

[70] X. Xie, et al.. Low-noise and broadband optical frequency comb generation based on an optoelectronic oscillator. Opt. Lett., 2014, 39(4): 785-788.

[71] Z. Xie, et al.. Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator. Opt. Eng., 2017, 56(6): 066115.

[72] W. Li, J. Yao. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop. J. Lightwave Technol., 2014, 32(20): 3573-3579.

[73] W. Y. Wang, et al.. Triangular microwave waveforms generation based on an optoelectronic oscillator. IEEE Photonics Technol. Lett., 2015, 27(5): 522-525.

[74] F. Zhang, et al.. Triangular pulse generation by polarization multiplexed optoelectronic oscillator. IEEE Photonics Technol. Lett., 2016, 28(15): 1645-1648.

[75] X. S. Yao, G. Lutes. A high-speed photonic clock and carrier recovery device. IEEE Photonics Technol. Lett., 1996, 8(5): 688-690.

[76] J. Lasri, et al.. Multiwavelength NRZ-to-RZ conversion with significant timing-jitter suppression and SNR improvement. Optics Commun., 2004, 240(4–6): 293-298.

[77] S. L. Pan, J. P. Yao. Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator. IEEE J. Sel. Top. Quantum Electron., 2010, 16(5): 1460-1468.

[78] F. Kong, W. Li, J. P. Yao. Transverse load sensing based on a dual-frequency optoelectronic oscillator. Opt. Lett., 2013, 38(14): 2611-2613.

[79] O.Okusagaet al., “The OEO as an acoustic sensor,” in Proc. Joint Eur. Freq. Time Forum Int. Freq. Control Symp., Prague, pp. 6668 (2013).

[80] T. Zhang, et al.. Improving accuracy of distance measurements based on an optoelectronic oscillator by measuring variation of fiber delay. Appl. Opt., 2013, 52(15): 3495-3499.

[81] C. H. Lee, S. H. Yim. Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device. Opt. Express, 2014, 22(11): 13634-13640.

[82] F. Kong, et al.. A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing. J. Lightwave Technol., 2014, 32(9): 1784-1793.

[83] Y. Zhu, et al.. High-sensitivity temperature sensor based on an optoelectronic oscillator. Appl. Opt., 2014, 53(22): 5084-5087.

[84] S.Zhang, H.Chen and H.Fu, “Fiber-optic temperature sensor using an optoelectronic oscillator,” in Proc. 14th Int. Conf., Opt. Commun. Netwoking, pp. 13 (2015).

[85] Y. Wang, J. Zhang, J. Yao. An optoelectronic oscillator for high sensitivity temperature sensing. IEEE Photonics Technol. Lett., 2016, 28(13): 1458-1461.

[86] S. Chew, et al.. Optoelectronic oscillator based sensor using an on-chip sensing probe. IEEE Photonics J., 2017, 9(2): 5500809.

[87] P. S. Devgan, et al.. Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter. IEEE Photonics Technol. Lett., 2010, 22(3): 152-154.

[88] Y. Shao, et al.. RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG. Opt. Lett., 2018, 43(6): 1199-1202.

[89] G. Wang, et al.. Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator. Opt. Commun., 2019, 439: 133-136.

[90] Z. Zhu, et al.. Highly sensitive broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator. Opt. Express, 2019, 27(9): 12855-12868.

[91] Y. Shao, et al.. Low-power RF signal detection using a high-gain tunable OEO based on equivalent phase modulation. J. Lightwave Technol., 2019, 37(21): 5370-5379.

[92] L.Maleki, “Optoelectronic oscillators for microwave and mm-wave generation,” in 18th Int. Radar Symp., pp. 15 (2017).

[93] T. Hao, et al.. Toward monolithic integration of OEOs: from systems to chips. J. Lightwave Technol., 2018, 36(19): 4565-4582.

[94] X. Zou, et al.. Optoelectronic oscillators (OEOs) to sensing, measurement, and detection. IEEE J. Quantum Electron., 2016, 52(1): 0601116.

[95] J. Yao. Optoelectronic oscillators for high speed and high resolution optical sensing. J. Lightwave Technol., 2017, 35(16): 3489-3497.

[96] P. Devgan. A review of optoelectronic oscillators for high speed signal processing applications. ISRN Electron., 2013, 2013: 401969.

[97] Q. Cen, et al.. Rapidly and continuously frequency-scanning opto-electronic oscillator. Opt. Express, 2017, 25(2): 635-643.

[98] T. Hao, et al.. Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering. IEEE Photonics Technol. Lett., 2018, 30(21): 1842-1845.

[99] T. Hao, et al.. Fourier domain mode locked optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering. OSA Continuum, 2018, 1(2): 408-415.

[100] T. Hao, et al.. Harmonically Fourier domain mode-locked optoelectronic oscillator. IEEE Photonics Technol. Lett., 2019, 31(6): 427-430.

[101] R.Liuet al., “Generating ultra-wideband LFM waveforms with large time duration based on frequency-sweeping optoelectronic oscillation,” in 18th Int. Conf. Opt. Commun. and Networks (ICOCN), Huangshan, pp. 13 (2019).

[102] T. Hao, et al.. Dual-chirp Fourier domain mode-locked optoelectronic oscillator. Opt. Lett., 2019, 44(8): 1912-1915.

[103] R. Liu, et al.. Simultaneous generation of ultra-wideband LFM and phase-coded LFM microwave waveforms based on an improved frequency-sweeping OEO. Opt. Commun., 2020, 459: 124938.

[104] S. Zhu, et al.. Polarization manipulated Fourier domain mode-locked optoelectronic oscillator. J. Lightwave Technol., 2020.

[105] Z. Zeng, et al.. Frequency-definable linearly chirped microwave waveform generation by a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering. Opt. Express, 2020, 28(9): 13861-13870.

[106] L. Zhang, et al.. Frequency-sweep-range-reconfigurable complementary linearly chirped microwave waveform pair generation by using a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering. IEEE Photonics J., 2020, 12(3): 5501010.

[107] X. Zhang, et al.. Novel RF-source-free reconfigurable microwave photonic radar. Opt. Express, 2020, 28(9): 13650-13661.

[108] T. Hao, et al.. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator. Opt. Express, 2018, 26(26): 33582-33591.

[109] T. Hao, et al.. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold. Opt. Lett., 2019, 44(12): 3062-3065.

[110] L.Liet al., “A parity-time-symmetric optoelectronic oscillator based on dual-wavelength carriers in a single spatial optoelectronic loop,” in Int. Top. Meeting Microwave Photonics (MWP), Ottawa, Ontario, pp. 14 (2019).

[111] Z. Fan, et al.. Hybrid frequency-tunable parity-time-symmetric optoelectronic oscillator. J. Lightwave Technol., 2020, 38(8): 2127-2133.

[112] Z.Daiet al., “Frequency-tunable parity-time-symmetric optoelectronic oscillator using a polarization-dependent Sagnac loop,” in Opt. Fiber Commun. Conf. (OFC) 2020, OSA Tech. Digest, p. Th1C.3 (2020).

[113] C.Tenget al., “Widely tunable parity-time symmetric optoelectronic oscillator based on a polarization modulator,” in Int. Top. Meeting Microwave Photonics (MWP), Ottawa, Ontario, pp. 14 (2019).

[114] C. Teng, et al.. Fine tunable PT-symmetric optoelectronic oscillator based on laser wavelength tuning. IEEE Photonics Technol. Lett., 2020, 32(1): 47-50.

[115] J. Tang, et al.. Integrated optoelectronic oscillator. Opt. Express, 2018, 26(9): 12257-12265.

[116] W. Zhang, J. P. Yao. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwave Technol., 2018, 36(19): 4655-4663.

[117] Z. Xuan, L. Du, F. Aflatouni. Frequency locking of semiconductor lasers to RF oscillators using hybrid-integrated opto-electronic oscillators with dispersive delay lines. Opt. Express, 2019, 27(8): 10729-10737.

[118] M. Merklein, et al.. Widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett., 2016, 41(20): 4633-4636.

[119] L. Nielsen, M. Heck. A computationally efficient integrated coupled opto-electronic oscillator model. J. Lightwave Technol., 2020.

[120] P.T. Do, et al.. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator. Sci. Rep., 2020, 10: 6982.

[121] N. Zhu, et al.. Directly modulated semiconductor laser. IEEE J. Sel. Top. Quantum Electron., 2018, 24(1): 1-19.

[122] X. S. Yao. Phase to amplitude modulation conversion using Brillouin selective sideband amplification. IEEE Photonics Technol. Lett., 1998, 10(2): 264-266.

[123] W. Li, M. Li, J. Yao. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans. Microwave Theory Tech., 2012, 60(5): 1287-1296.

[124] N. Shi, et al.. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating. Opt. Commun., 2018, 407: 27-32.

[125] X. Zou, et al.. Photonics for microwave measurements. Laser Photonics Rev., 2016, 10(5): 711-734.

[126] S. Pan, J. Yao. Photonics-based broadband microwave measurement. J. Lightwave Technol., 2017, 35(16): 3498-3513.

[127] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80: 5243-5246.

[128] N. Hatano, D. R. Nelson. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77: 570-573.

[129] C. Zheng, L. Hao, G. L. Long. Observation of a fast evolution in a parity-time-symmetric system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2013, 371: 20120053.

[130] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11: 752-762.

[131] H. Hodaei, et al.. Parity-time–symmetric microring lasers. Science, 2014, 346(6212): 975-978.

[132] L. Feng, et al.. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212): 972-975.

[133] W. Liu, et al.. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun., 2017, 8: 15389.

[134] L. Chang, et al.. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 2014, 8: 524-529.

[135] B. Peng, et al.. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10: 394-398.

[136] J. Schindler, et al.. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A, 2011, 84: 040101.

[137] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 2019, 13: 80-90.

[138] G. de Valincourt, et al.. Photonic integrated circuit based on hybrid III-V/silicon integration. J. Lightwave Technol., 2018, 36(2): 265-273.

[139] M. Smit, et al.. An introduction to InP-based generic integration technology. Semicond. Sci. Technol., 2014, 29: 083001.

[140] D. Thomson, et al.. Roadmap on silicon photonics. J. Opt., 2016, 18: 073003.

[141] W. Zhang, J. Yao. Silicon-based integrated microwave photonics. IEEE J. Quantum Electron., 2016, 52: 0600412.

[142] , C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 2010, 4: 535-544.

[143] D. J. Moss, et al.. New CMOS compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 2013, 7: 597-607.

[144] H. Park, et al.. Heterogeneous silicon nitride photonics. Optica, 2020, 7(4): 336-337.

[145] Q.Yuet al., “Heterogeneous photodiodes on silicon nitride waveguides with 20 GHz bandwidth,” in OFC 2020, San Diego, California, p. W4G.1 (2020).

[146] C. H. G. Roeloffzen, et al.. Silicon nitride microwave photonic circuits. Opt. Express, 2013, 21(19): 22937-22961.

[147] D. Liu, et al.. Large-capacity and low-loss integrated optical buffer. Opt. Express, 2019, 27(8): 11585-11593.

[148] W. Liu, et al.. A fully reconfigurable photonic integrated signal processor. Nat. Photonics, 2016, 10(3): 190-195.

[149] M. Li, et al.. Photonic integration circuits in China. IEEE J. Quantum Electron., 2016, 52(1): 0601017.

[150] M. Li, et al.. Recent progresses on optical arbitrary waveform generation. Front. Optoelectron., 2014, 7(3): 359-375.

[151] N. Shi, et al.. Dual-functional transmitter for simultaneous RF/LFM signal using a monolithic integrated DFB array. IEEE Photonics Technol. Lett., 2020, 32(5): 239-242.

[152] Q. Song, et al.. Monolithic integrated 4×25  Gb/s transmitter optical subassembly at 1.55  <. Opt. Commun., 2019, 441: 160-164.

[153] M. Burla, et al.. Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express, 2013, 21(21): 25120-25147.

[154] T. Hao, et al.. Optoelectronic parametric oscillator. Light Sci. Appl., 2020, 9(1): 102.

[155] J. F. Bauters, et al.. Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding. Opt. Express, 2011, 19(24): 24090-24101.

[156] J. F. Bauters, et al.. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express, 2011, 19(4): 3163-3174.

[157] C. Xiang, et al.. Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators. IEEE J. Sel. Top. Quantum Electron., 2018, 24(4): 5500109.

[158] J. J. G. M. van der Tol, et al.. InP membrane on silicon (IMOS) photonics. IEEE J. Quantum Electron., 2020, 56(1): 6300107.

[159] F. Kish, et al.. System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 2018, 24(1): 6100120.

[160] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 2015, 4: e358.

[161] E. M. T. Fadaly, et al.. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature, 2020, 580: 205-209.

Tengfei Hao, Yanzhong Liu, Jian Tang, Qizhuang Cen, Wei Li, Ninghua Zhu, Yitang Dai, José Capmany, Jianping Yao, Ming Li. Recent advances in optoelectronic oscillators[J]. Advanced Photonics, 2020, 2(4): 044001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!