Photonic Sensors, 2019, 9 (4): 327, Published Online: Dec. 5, 2019  

Crack Detection by Optical Voice Recorder Based on Digital Holography

Author Affiliations
Zonguldak Bülent Ecevit University, Faculty of Engineering, Department of Electrical and Electronics Engineering, Incivez, Zonguldak 67100, Turkey
Copy Citation Text

Gülhan USTABAS KAYA, Zehra SARAC. Crack Detection by Optical Voice Recorder Based on Digital Holography[J]. Photonic Sensors, 2019, 9(4): 327.

References

[1] Y. Zou, L. Tong, and G. P. Steven, “Vibration based model dependent damage (delamination) identification and health monitoring for composite structures—a review,” Journal of Sound and Vibration, 2000, 230(2): 357-378.

[2] A. G. Mamalis, G. L. Petrossian, and D. E. Manolakos, “Effect of porosity and micro-defects on plastically deformed porous materials,” Journal of Materials Processing Technology, 1999, 96(1-3): 117-123.

[3] Z. Xu, X. Fan, W. Zhang, and T. J. Wang, “Numerical analysis of anisotropic elasto-plastic deformation of porous materials with arbitrarily shaped pores,” International Journal of Mechanical Sciences, 2015, 96-97(1): 121-131.

[4] T. Y. Jiang, Q. Z. Kong, D. Patil, Z. T. Luo, L. S. Huo, and G. B. Song, “Detection of debonding between FRP rebar and concrete structure using piezoceramic transducers and wavelet packet analysis,” IEEE Sensors Journal, 2017, 17(7): 1992-1998.

[5] P. Liu, R. M. Groves, and R. Benedictus, “3D monitoring of delamination growth in a wind turbine blade composite using optical coherence tomography,” NDT & E International, 2014, 64(1): 52-58.

[6] A. Mohan and S. Poobal, “Crack detection using image processing: a critical review and analysis,” Alexandria Engineering Journal, 2017, 57(1): 787-798.

[7] K. Tai, “The application of digital image processing technology in glass bottle crack detection system,” Acta Technica, 2017, 62(1A): 381-390.

[8] A. M. Albishi and O. M. Ramahi, “Surface crack detection in metallic materials using sensitive microwave-based sensors,” in Proceeding of 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 2016, pp. 1-3.

[9] Ucar metal Home Page. http://www.ucarmetal.com/catlak-kontrol-cihazi.asp (Accessed June 13, 2018).

[10] W. Sudatham, H. Matsumoto, S. Takahashi, and K. Takamasu, “Non-contact measurement technique for dimensional metrology using optical comb,” Measurement, 2016, 78(1): 381-387.

[11] S. Gholizadeh, “A review of non-destructive testing methods of composite materials,” Procedia Structural Integrity, 2016, 1(1): 50-57.

[12] A. Katunin, K. Dragan, and M. Dziendzikowski, “Damage identification in aircraft composite structures: a case study using various nondestructive testing techniques,” Composite Structures, 2015, 127(1): 1-9.

[13] P. Broberg, “Surface crack detection in welds using thermography,” NDT&E International, 2013, 57(1): 69-73.

[14] A. Keshtgar and M. Modarres, “Detecting crack initiation based on acoustic emission,” Chemical Engineering Transactions, 2013, 33(1): 547-552.

[15] M. Aoyagi, T. Hiraguri, and T. Ueno, “Nondestructive detection of cracks near the surface of wooden boards by dynamic heat dissipation,” Wood Science and Technology, 2014, 48(4): 773-786.

[16] J. Zhang, B. Huang, G. Zhang, and G. Y. Tian, “Wireless passive ultrahigh frequency RFID antenna sensor for surface crack monitoring and quantitative analysis,” Sensors, 2018, 18(7): 2130-1-2130-11.

[17] D. Yu, S. Wenbin, Y. Hong, and Y. Yan, “Measurements of the characteristics of transparent material using digital holography,” Advances in Materials Science and Engineering, 2013, 598737(1): 1-7.

[18] P. A. Doyle and C. M. Scala, “Crack depth measurement by ultrasonics: a review,” Ultrasonics, 1978, 16(4): 164-170.

[19] M. R. Martín, S. Lagüela, D. G. Aguilera, and J. Martínez, “Thermographic test for the geometric characterization of cracks in welding using IR image rectification,” Automation in Construction, 2016, 61(1): 58-65.

[20] S. Dorafshan, M. Maguire, and W. Collins, “Infrared thermography for weld inspection: feasibility and application,” Infrastructures, 2018, 3(4): 45-1-45-17.

[21] P. Prasanna, K. Dana, N. Gucunski, and B. Basily, “Computer-vision based crack detection and analysis,” SPIE, 2012, 8345: 834542-1-834542-6.

[22] Z. Q. Shi, X. Y. Xu, J. J. Ma, D. Zhen, and H. Zhang, “Quantitative detection of cracks in steel using eddy current pulsed thermography,” Sensors, 2018, 18(4): 1070-1-1070-14.

[23] U. Schnars and W. Juptner, Digital holography: digital hologram recording, numerical reconstruction and related techniques. Berlin, Germany: Springer-Verlag, 200:1-164.

[24] L. Yaroslavsky, Digital holography and digital image processing: principles, methods, algorithms. New York, USA: Springer US Publisher, 2004: 1-584.

[25] S. Seebacher, W. Osten, P .Werner, and O. Jueptner, “Measuring shape and deformation of small objects using digital holography,” SPIE, 1998, 3479: 104-115.

[26] I. Takahashi, T. Nomura, Y. Morimoto, S. Yoneyama, and M. Fujigaki, “Deformation measurement by digital holographic interferometry,” SPIE, 2003, 5264: 206-213.

[27] W. Zhou, J. Peng, and Y. J. Yu, “Deformation measurement via digital holography,” Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2005, 13(1): 46-51.

[28] Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holographic interferometry,” Experimental Mechanics, 2005, 45(1): 65-70.

[29] V. Lédl, F. Kaván, O. Matousek, R. Dolecek, and P. Psota, “Large displacement and deformation measurement by frequency sweeping digital holography,” SPIE, 2017, 10603: 106030C-1-106030C-7.

[30] D. D. Aguayo, F. M. Santoyo, M. H. De la Torre-I, M. D. S. Araiza, C. C. Mendez, and D. A. G. Hernandez, “Insect wing deformation measurements using high speed digital holographic interferometry,” Optics Express, 2010, 18(6): 5661-5667.

[31] D. Claus, “High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method,” Applied Optics, 2010, 49(16): 3187-3198.

[32] I. Yamaguchi, “Image formation and measurement of surface shape and deformation by phase-shifting digital holography,” SPIE, 2005, 5642(1): 66-77.

[33] M. Dekiff, P. Berssenbrügge, B. Kemper, C. Denz, and D. Dirksen, “Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology,” Biomedical Optics Express, 2015, 6(12): 4825-4840.

[34] U. San, G. U. Kaya, and Z. Sarac, “Non-contact performance analysis of the core materials by digital holographic interferometry,” IET Science, Measurement & Technology, 2016, 10(1): 38-43.

[35] N. F. A. Maaboud, M. S. E. Bahrawi, and F. A. Aziz, “Digital holography in flatness and crack investigation,” Metrology and Measurement Systems, 2010, 17(4): 583-588.

[36] P. Tankam and P. Picart, “Use of digital color holography for crack investigation in electronic components,” Optics Lasers Engineering, 2011, 49(1): 1335-1342.

[37] X. P. Wu, W. R. Gao, and Y. He, “Estimation of parameters for evaluating subsurface microcracks in glass with In-line digital holographic microscopy,” Applied Optics, 2016, 55(3): A32-A42.

[38] O. Matoba, H. Inokuchi, K. Nitta, and Y. Awatsuji, “Optical voice recorder by off-axis digital holography,” Optics Letters, 2014, 39(22): 6549-6552.

[39] G. U. Kaya and Z. Sarac, “The determination of crack on glass surface by optical voice detector based on digital holography,” in Proceeding of 1st International Conference on Optics, Photonics and Lasers (OPAL' 2018), Barcelona, Spain, 2018, pp.171-175.

[40] M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic of 3D object shapes,” Applied Optics, 1983, 22(24): 3977-3982.

Gülhan USTABAS KAYA, Zehra SARAC. Crack Detection by Optical Voice Recorder Based on Digital Holography[J]. Photonic Sensors, 2019, 9(4): 327.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!