中国激光, 2019, 46 (9): 0910001, 网络出版: 2019-09-10   

地表反射率及气溶胶光学厚度对星载路径积分差分吸收激光雷达性能的影响 下载: 1028次

Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar
作者单位
1 南京信息工程大学气象灾害预警与评估协同创新中心, 中国气象局气溶胶与云降水重点实验室,教育部气象灾害重点实验室, 江苏 南京 210044
2 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
引用该论文

杨巨鑫, 朱亚丹, 王勤, 卜令兵, 刘继桥, 陈卫标. 地表反射率及气溶胶光学厚度对星载路径积分差分吸收激光雷达性能的影响[J]. 中国激光, 2019, 46(9): 0910001.

Yang Juxin, Zhu Yadan, Wang Qin, Bu Lingbing, Liu Jiqiao, Chen Weibiao. Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar[J]. Chinese Journal of Lasers, 2019, 46(9): 0910001.

参考文献

[1] Jefferson M. IPCC fifth assessment synthesis report: “Climate change 2014: longer report”: Critical analysis[J]. Technological Forecasting and Social Change, 2015, 92: 362-363.

[2] Yoshida Y, Ota Y, Eguchi N, et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques Discussions, 2010, 3(6): 4791-4833.

[3] Kimura T. Overview of Japanese earth observation programs (conference presentation)[J]. Proceedings of SPIE, 2018, 10785: 107850M.

[4] Crisp D, Pollock H R, Rosenberg R, et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products[J]. Atmospheric Measurement Techniques, 2017, 10(1): 59-81.

[5] ChenW, ZhangY, YinZ, et al. In the TanSat mission: global CO2 observation and monitoring[C]∥63rd International Astronautical Congress, October 1-5, 2012, Naples, Italy. [S.l.: s.n.], 2012: 1- 5.

[6] Zhang L, Yue T, Wilson J, et al. Modelling of XCO2 surfaces based on flight tests of TanSat instruments[J]. Sensors, 2016, 16(11): 1818.

[7] 唐绍凡, 鲁之君, 王伟刚, 等. 航天高光谱成像仪简述[J]. 红外与激光工程, 2019, 48(3): 0303003.

    Tang S F, Lu Z J, Wang W G, et al. Brief description of space hyperspectral imager[J]. Infrared and Laser Engineering, 2019, 48(3): 0303003.

[8] 熊伟. “高分五号”卫星大气主要温室气体监测仪[J]. 红外与激光工程, 2019, 48(3): 0303002.

    Xiong W. Greenhouse gases monitoring instrument(GMI) on GF-5 satellite[J]. Infrared and Laser Engineering, 2019, 48(3): 0303002.

[9] Kawa SR, Abshire JB, Baker DF, et al. Active sensing of CO2 emissions over nights, days, seasons ( ASCENDS) : final report of the ASCENDS ad hoc science definition team[R/OL]. ( 2018-11-28)[2019-03-02]. https:∥ntrs.nasa.gov/search.jsp?R=20190000855

[10] Abshire J B, Riris H, Allan G R, et al. Pulsed airborne lidar measurements of atmospheric CO2 column absorption[J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(5): 770-783.

[11] Abshire J B, Riris H, Weaver C J, et al. Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar[J]. Applied Optics, 2013, 52(19): 4446-4461.

[12] Abshire J B, Ramanathan A K, Riris H, et al. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector[J]. Atmospheric Measurement Techniques, 2018, 11(4): 2001-2025.

[13] Campbell J F, Lin B, Nehrir A R. Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements[J]. Applied Optics, 2014, 53(5): 816-829.

[14] Campbell J F, Lin B, Nehrir A R, et al. Binary phase shift keying on orthogonal carriers for multi-channel CO2 absorption measurements in the presence of thin clouds[J]. Optics Express, 2014, 22(S6): A1634-A1640.

[15] Lin B, Nehrir A R, Harrison F W, et al. Atmospheric CO2 column measurements in cloudy conditions using intensity-modulated continuous-wave lidar at 1.57 micron[J]. Optics Express, 2015, 23(11): A582-A593.

[16] Bézy J L, Bensi P, Lin C C, et al. ESA future earth observation explorer missions[J]. Proceedings of SPIE, 2008, 7081: 70810S.

[17] Durand Y, Caron J, Hélière A, et al. LIDAR technology developments in support of ESA earth observation missions[J]. Proceedings of SPIE, 2017, 10566: 105661F.

[18] DurandY, CaronJ, BensiP, et al. A-SCOPE: concepts for an ESA mission to measure CO2 from space with a lidar[C]∥8th International Symposium on Tropospheric Profiling, October, 2009, The Netherlands. [S.l.: s.n.], 2009.

[19] Amediek A, Fix A, Ehret G, et al. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2[J]. Atmospheric Measurement Techniques, 2009, 2(2): 755-772.

[20] 刘继桥, 谢杨易, 李世光, 等. 用于全球大气温室气体探测的星载激光雷达研究[J]. 红外, 2013, 34(2): 22-26, 34.

    Liu J Q, Xie Y Y, Li S G, et al. Research on spaceborne lidar for global atmospheric greenhouse gases detection[J]. Infrared, 2013, 34(2): 22-26, 34.

[21] 谢杨易, 刘继桥, 姜佳欣, 等. 使CO2浓度测量误差减小的星载激光雷达波长优化[J]. 红外与激光工程, 2014, 43(1): 88-93.

    Xie Y Y, Liu J Q, Jiang J X, et al. Wavelengths optimization to decrease error for a space-borne lidar measuring CO2 concentration[J]. Infrared and Laser Engineering, 2014, 43(1): 88-93.

[22] 史成龙. 机载积分路径差分吸收 (IPDA) 激光雷达测量大气CO2浓度研究[D]. 北京: 中国科学院大学, 2015: 17- 26.

    Shi CL. Research on air-borne IPDA lidar carbon dioxide column concentrations measurement[D]. Beijing: University of Chinese Academy of Sciences, 2015: 17- 26.

[23] 杜鹃. 星载激光雷达激光频率精密控制技术研究[D]. 北京: 中国科学院大学, 2018: 106- 114.

    DuJ. Study of precise laser frequency control technology applied in spaceborne lidar[D]. Beijing: University of Chinese Academy of Sciences, 2018: 106- 114.

[24] 穆永吉, 李蕊, 万渊, 等. 星载激光雷达系统杂散光分析与抑制[J]. 中国激光, 2018, 45(5): 0510005.

    Mu Y J, Li R, Wan Y, et al. Stray light analysis and suppression for spaceborne lidar system[J]. Chinese Journal of Lasers, 2018, 45(5): 0510005.

[25] 陈晓, 李世光, 朱小磊, 等. 基于长程气体吸收池的单频纳秒脉冲激光光谱纯度测量[J]. 中国激光, 2019, 46(2): 0204006.

    Chen X, Li S G, Zhu X L, et al. Spectral purity measurement of single-frequency nanosecond laser pulse based on long path absorption cell[J]. Chinese Journal of Lasers, 2019, 46(2): 0204006.

[26] 王俊洋. 星载激光雷达探测大气二氧化碳浓度的模拟与反演研究[D]. 青岛: 中国海洋大学, 2015: 17- 25.

    Wang JY. Research on performance simulation and retrieval algorithm of space-borne lidar for measuring CO2 concentration[D]. Qingdao: Ocean University of China, 2015: 17- 25.

[27] 马晖. 星载温室气体探测IPDA激光雷达指标论证[D]. 合肥: 中国科学技术大学, 2018: 39- 48.

    MaH. Reliability demonstrating of space-borne greenhouse gases measurement using IPDA lidar[D]. Hefei: University of Science and Technology of China, 2018: 39- 48.

[28] Disney M I, Lewis P E, Bouvet M, et al. Quantifying surface reflectivity for spaceborne lidar via two independent methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9): 3262-3271.

[29] Roy D P, Jin Y, Lewis P E, et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 2005, 97(2): 137-162.

[30] Ångström A. On the atmospheric transmission of sun radiation and on dust in the air[J]. Geografiska Annaler, 1929, 11: 156-166.

[31] 江文杰, 施建华, 谢文科. 光电技术[M]. 2版. 北京: 科学出版社, 2014: 89- 91.

    Jiang WJ, Shi JH, Xie WK. Electrooptical technology [M]. 2nd ed. Beijing: Science Press, 2014: 89- 91.

[32] Grant W B. Effect of differential spectral reflectance on DIAL measurements using topographic targets[J]. Applied Optics, 1982, 21(13): 2390-2394.

[33] Levy R C, Remer L A, Kleidman R G, et al. Global evaluation of the collection 5 MODIS dark-target aerosol products over land[J]. Atmospheric Chemistry and Physics, 2010, 10(21): 10399-10420.

[34] Hill C, Gordon I E, Kochanov R V, et al. HITRANonline: an online interface and the flexible representation of spectroscopic data in the HITRAN database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 177: 4-14.

杨巨鑫, 朱亚丹, 王勤, 卜令兵, 刘继桥, 陈卫标. 地表反射率及气溶胶光学厚度对星载路径积分差分吸收激光雷达性能的影响[J]. 中国激光, 2019, 46(9): 0910001. Yang Juxin, Zhu Yadan, Wang Qin, Bu Lingbing, Liu Jiqiao, Chen Weibiao. Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar[J]. Chinese Journal of Lasers, 2019, 46(9): 0910001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!