Photonics Research, 2017, 5 (5): 05000396, Published Online: Aug. 15, 2017  

Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities Download: 621次

Author Affiliations
1 Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300350, China
2 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Copy Citation Text

Junda Zhu, Ying Zhong, Haitao Liu. Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities[J]. Photonics Research, 2017, 5(5): 05000396.

References

[1] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett., 2003, 28: 272-274.

[2] A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala. Label-free, single-molecule detection with optical microcavities. Science, 2007, 317: 783-787.

[3] F. Vollmer, S. Arnold, D. Keng. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA, 2008, 105: 20701-20704.

[4] J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 4: 46-49.

[5] L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 2011, 6: 428-432.

[6] V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett., 2013, 13: 3347-3351.

[7] L. B. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, Q. H. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 2013, 25: 5616-5620.

[8] S. K. Ozdemir, J. G. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 2014, 111: E3836-E3844.

[9] M. D. Baaske, M. R. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol., 2014, 9: 933-939.

[10] B. B. Li, W. R. Clements, X. C. Yu, K. B. Shi, Q. H. Gong, Y. F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 2014, 111: 14657-14662.

[11] J. Su, A. F. G. Goldberg, B. M. Stoltz. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl., 2016, 5: e16001.

[12] B. Q. Shen, X. C. Yu, Y. Y. Zhi, L. Wang, D. H. Kim, Q. H. Gong, Y. F. Xiao. Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity. Phys. Rev. Appl., 2016, 5: 024011.

[13] W. Y. Yu, W. C. Jiang, Q. Lin, T. Lu. Cavity optomechanical spring sensing of single molecules. Nat. Commun., 2016, 7: 12311.

[14] D. S. Weiss, V. Sandoghdar, J. Hare, V. L. Seguin, J. M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 1995, 20: 1835-1837.

[15] I. Teraoka, S. Arnold. Resonance shifts of counterpropagating whispering-gallery modes: degenerate perturbation theory and application to resonator sensors with axial symmetry. J. Opt. Soc. Am. B, 2009, 26: 1321-1329.

[16] J. T. Rubin, L. Deych. Ab initio theory of defect scattering in spherical whispering-gallery-mode resonators. Phys. Rev. A, 2010, 81: 053827.

[17] M. R. Foreman, F. Vollmer. Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles. New J. Phys., 2013, 15: 083006.

[18] L. Deych, M. Ostrowski, Y. Yi. Defect-induced whispering-gallery-mode resonances in optical microdisk resonators. Opt. Lett., 2011, 36: 3154-3156.

[19] L. Deych, V. Shuvayev. Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode resonances in spheroidal optical resonators. Phys. Rev. A, 2015, 92: 013842.

[20] A. Mazzei, S. Goetzinger, L. D. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 2007, 99: 173603.

[21] X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, Q. H. Gong. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator. Phys. Rev. A, 2011, 83: 023803.

[22] Y. W. Hu, L. B. Shao, S. Arnold, Y. C. Liu, C. Y. Ma, Y. F. Xiao. Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity. Phys. Rev. A, 2014, 90: 043847.

[23] K. Srinivasan, O. Painter. Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A, 2007, 75: 023814.

[24] Y. C. Shen, J. T. Shen. Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers. Phys. Rev. A, 2012, 85: 013801.

[25] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 2000, 17: 1051-1057.

[26] Q. Li, A. A. Eftekhar, Z. X. Xia, A. Adibi. Unified approach to mode splitting and scattering loss in high-Q whispering-gallery-mode microresonators. Phys. Rev. A, 2013, 88: 033816.

[27] RayleighL., Theory of Sound (Macmillan, 1878), Vol. II.

[28] X. L. Cai, J. W. Wang, M. J. Strain, B. Johnson-Morris, J. B. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. T. Yu. Integrated compact optical vortex beam emitters. Science, 2012, 338: 363-366.

[29] P. Miao, Z. F. Zhang, J. B. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, L. Feng. Orbital angular momentum microlaser. Science, 2016, 353: 464-467.

[30] S. Longhi, L. Feng. PT-symmetric microring laser-absorber. Opt. Lett., 2014, 39: 5026-5029.

[31] D. Bucci, B. Martin, A. Morand. Study of propagation modes of bent waveguides and micro-ring resonators by means of the aperiodic fourier modal method. Proc. SPIE, 2010, 7597: 75970U.

[32] X. Du, S. Vincent, T. Lu. Full-vectorial whispering-gallery-mode cavity analysis. Opt. Express, 2013, 21: 22012-22022.

[33] A. Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett., 2000, 36: 321-322.

[34] R. W. Boyd, J. E. Heebner. Sensitive disk resonator photonic biosensor. Appl. Opt., 2001, 40: 5742-5747.

[35] J. Ctyroky, I. Richter, M. Sinor. Dual resonance in a waveguide-coupled ring microresonator. Opt. Quantum Electron., 2006, 38: 781-797.

[36] M. Hammer. HCMT models of optical microring-resonator circuits. J. Opt. Soc. Am. B, 2010, 27: 2237-2246.

[37] J. T. Shen, S. H. Fan. Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A, 2009, 79: 023838.

[38] J. Wiersig. Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A, 2011, 84: 063828.

[39] S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, J. H. Shin. Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator. Opt. Express, 2010, 18: 20638-20644.

[40] VassalloC., Optical Waveguide Concepts (Elsevier, 1991).

[41] J. P. Hugonin, P. Lalanne. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A, 2005, 22: 1844-1849.

[42] LiuH., DIF CODE for Modeling Light Diffraction in Nanostructures (Nankai University, 2010).

[43] L. Li. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. A, 2003, 5: 345-355.

[44] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 1996, 13: 1024-1035.

[45] H. Liu. Coherent-form energy conservation relation for the elastic scattering of a guided mode in a symmetric scattering system. Opt. Express, 2013, 21: 24093-24098.

[46] TyrtyshnikovE. E., A Brief Introduction to Numerical Analysis (Springer, 1997).

[47] K. R. Hiremath, V. N. Astratov. Perturbations of whispering gallery modes by nanoparticles embedded in microcavities. Opt. Express, 2008, 16: 5421-5426.

[48] F. Vollmer, L. Yang. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 2012, 1: 267-291.

[49] M. Borselli, T. J. Johnson, O. Painter. Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. Opt. Express, 2005, 13: 1515-1530.

[50] S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka. MicroParticle photophysics illuminates viral bio-sensing. Faraday Discuss., 2008, 137: 65-83.

[51] W. Kim, S. K. Ozdemir, J. G. Zhu, L. Yang. Observation and characterization of mode splitting in microsphere resonators in aquatic environment. Appl. Phys. Lett., 2011, 98: 141106.

[52] H. Liu. Symmetry in the elementary scattering of surface plasmon polaritons and a generalized symmetry principle. Opt. Lett., 2010, 35: 2876-2878.

[53] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 2014, 112: 203901.

[54] Y. Li, H. Liu, H. Jia, F. Bo, G. Zhang, J. Xu. Fully-vectorial modeling of cylindrical microresonators with aperiodic Fourier modal method. J. Opt. Soc. Am. A, 2014, 31: 2459-2466.

[55] PopovE., Gratings: Theory and Numeric Applications, 2nd ed. (Institut Fresnel, 2014).

Junda Zhu, Ying Zhong, Haitao Liu. Impact of nanoparticle-induced scattering of an azimuthally propagating mode on the resonance of whispering gallery microcavities[J]. Photonics Research, 2017, 5(5): 05000396.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!