光学学报, 2019, 39 (1): 0126006, 网络出版: 2019-05-10   

亚周期超快光场相干合成技术 下载: 705次特邀综述

Sub-Optical-Cycle Coherent Waveform Synthesis
方少波 1,*魏志义 1,2,*
作者单位
1 中国科学院物理研究所北京凝聚态物理国家研究中心, 北京 100190
2 中国科学院大学, 北京 100049
引用该论文

方少波, 魏志义. 亚周期超快光场相干合成技术[J]. 光学学报, 2019, 39(1): 0126006.

Shaobo Fang, Zhiyi Wei. Sub-Optical-Cycle Coherent Waveform Synthesis[J]. Acta Optica Sinica, 2019, 39(1): 0126006.

参考文献

[1] Rossi GM, CirmiG, Fang SB, et al. Spectro-temporal characterization of all channels in a sub-optical-cycle parametric waveform synthesizer[C]. Conference on Lasers and Electro-Optics, 2014: SF1E. 3.

[2] Manzoni C, Mücke O D, Cirmi G, et al. Coherent pulse synthesis: towards sub-cycle optical waveforms[J]. Laser & Photonics Reviews, 2015, 9(2): 129-171.

[3] Wirth A, Hassan M T, Grguras I, et al. Synthesized light transients[J]. Science, 2011, 334(6053): 195-200.

[4] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163.

[5] Takahashi E J, Lan P F, Mücke O D, et al. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse[J]. Physical Review Letters, 2010, 104(23): 233901.

[6] Takahashi E J, Lan P, Oliver D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 2013, 4(10): 2691.

[7] Sansone G, Poletto L, Nisoli M. High-energy attosecond light sources[J]. Nature Photonics, 2011, 5(11): 655-663.

[8] Kolesik M, Brown J M, Moloney J V, et al. History-dependent effects in subcycle-waveform strong-field ionization[J]. Physical Review A, 2014, 90(3): 033414.

[9] Chipperfield L E, Robinson J S. Tisch J W G, et al. Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period[J]. Physical Review Letters, 2009, 102(6): 063003.

[10] Pérez-Hernández J A, Ciappina M F, Lewenstein M, et al. . Beyond carbon K-edge harmonic emission using a spatial and temporal synthesized laser field[J]. Physical Review Letters, 2013, 110(5): 053001.

[11] Jin C, Wang G L, Wei H, et al. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields[J]. Nature Communications, 2014, 5: 4003.

[12] Jin C, Wang G L, Le A T, et al. Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses[J]. Scientific Reports, 2015, 4: 7067.

[13] Haessler S. Bal iunas T, Fan G, et al. Optimization of quantum trajectories driven by strong-field waveforms [J]. Physical Review X, 2014, 4(2): 021028.

[14] Balogh E, Bódi B, Tosa V, et al. Genetic optimization of attosecond-pulse generation in light-field synthesizers[J]. Physical Review A, 2014, 90(2): 023855.

[15] VeiszL, RivasD, MarcusG, et al. Generation and applications of sub-5-fs multi-10-TW light pulses[C]. Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), 30 June-4 July 2013, Kyoto, Japan, 2013: 1- 2.

[16] Edwards M R, Platonenko V T, Mikhailova J M. Enhanced attosecond bursts of relativistic high-order harmonics driven by two-color fields[J]. Optics Letters, 2014, 39(24): 6823-6826.

[17] Mangles S P D, Murphy C D, Najmudin Z, et al. . Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431(7008): 535-538.

[18] Geddes C G R, Toth C, van Tilborg J, et al. . High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431(7008): 538-541.

[19] Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544.

[20] Buck A, Nicolai M, Schmid K, et al. Real-time observation of laser-driven electron acceleration[J]. Nature Physics, 2011, 7(7): 543-548.

[21] Leemans W, Gonsalves A, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113(24): 245002.

[22] Chen S, Powers N D, Ghebregziabher I, et al. MeV-energy X rays from inverse compton scattering with laser-wakefield accelerated electrons[J]. Physical Review Letters, 2013, 110(15): 155003.

[23] Corde S, Ta Phuoc K, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 2013, 85(1): 1-48.

[24] Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip[J]. Nature, 2011, 475(7354): 78-81.

[25] Herink G, Solli D R, Gulde M, et al. Field-driven photoemission from nanostructures quenches the quiver motion[J]. Nature, 2012, 483(7388): 190-193.

[26] Piglosiewicz B, Schmidt S, Park D J, et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures[J]. Nature Photonics, 2013, 7(11): 37-42.

[27] Gulde M, Schweda S, Storeck G, et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics[J]. Science, 2014, 345(6193): 200-204.

[28] Ghimire S, Dichiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2010, 7(2): 138-141.

[29] Mücke O D. Isolated high-order harmonics pulse from two-color-driven Bloch oscillations in bulk semiconductors[J]. Physical Review B, 2011, 84(8): 081202.

[30] Paaschcolberg T, Schiffrin A, Karpowicz N, et al. Optical-field-induced current in dielectrics[J]. Nature, 2013, 493(7430): 70-74.

[31] Schultze M, Bothschafter E M, Sommer A, et al. Controlling dielectrics with the electric field of light[J]. Nature, 2012, 493(7430): 75-78.

[32] Huang S W, Cirmi G, Moses J, et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics[J]. Nature Photonics, 2011, 5(8): 475-479.

[33] Hassan M T, Wirth A, Grguraš I, et al. Invited article: attosecond photonics: synthesis and control of light transients[J]. Review of Scientific Instruments, 2012, 83(11): 111301.

[34] Hassan MT, Luu TT, MouletA, et al. Synthesis of isolated optical attosecond pulses[C]. 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, 12-16 May 2013, Munich, Germany, 2013: 14253224.

[35] Fang S, Yamane K, Zhu J, et al. Generation of sub-900-μJ supercontinuum with a two-octave bandwidth based on induced phase modulation in argon-filled hollow fiber[J]. IEEE Photonics Technology Letters, 2011, 23(11): 688-690.

[36] FangS, CirmiG, Chia SH, et al. Multi-mJ parametric synthesizer generating two-octave-wide optical waveforms[C]. Conference on Lasers & Electro-Optics Pacific Rim, 2013: 13777697.

[37] Kärtner FX, CirmiG, YeH, et al. High-energy carrier-envelope phase-stable optical waveforms compressible to <1 fs using induced-phase modulation in argon-filled hollow-core fiber[C]. High Intensity Lasers & High Field Phenomena, 2014: HW1C. 2.

[38] FangS, YeH, CirmiG, et al. Above-millijoule optical waveforms compressible to sub-fs using induced-phase modulation in a neon-filled hollow-core fiber[C]. International Conference on Ultrafast Phenomena, 2014: 789- 792.

[39] Sakakibara Y. Fang S B, et al. Spatial light modulator of 648 pixels with liquid crystal transparent from ultraviolet to near-infrared and its chirp compensation application[J]. Optics Letters, 2009, 34(11): 1696-1698.

[40] Chia S H, Cirmi G, Fang S B, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315-322.

[41] YamashitaM, ShigekawaH, MoritaR. Mono-cycle photonics and optical scanning tunneling microscopy[M]. Berlin Heidelberg: Springer-Verlag, 2005.

[42] Nisoli M, de Silvestri S, Svelto O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 1996, 68(20): 2793-2795.

[43] Hassan M T, Luu T T, Moulet A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature, 2016, 530(7588): 66-70.

[44] Mucke O D, Fang S B, Cirmi G, et al. Toward waveform nonlinear optics using multimillijoule sub-cycle waveform synthesizers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(5): 1-12.

[45] Bohman S, Suda A, Kanai T, et al. Generation of 50 fs, 50 mJ pulses at 1 kHz using hollow-fiber pulse compression[J]. Optics Letters, 2010, 35(11): 1887-1889.

[46] Nagy T, Pervak V, Simon P. Optimal pulse compression in long hollow fibers[J]. Optics Letters, 2011, 36(22): 4422-4424.

[47] Rothhardt J, Hädrich S, Delagnes J, et al. High average power near-infrared few-cycle lasers (laser photonics rev. 11(4)/2017)[J]. Laser & Photonics Reviews, 2017, 11(4): 1770041.

[48] Lu C H, Tsou Y J, Chen H Y, et al. Generation of intense supercontinuum in condensed media[J]. Optica, 2014, 1(6): 400-406.

[49] He P, Liu Y Y, Zhao K, et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level[J]. Optics Letters, 2017, 42(3): 474-477.

[50] Dubietis A, Jonušauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 1992, 88(4/5/6): 437-440.

[51] Martinez O E, Gordon J P, Fork R L. Negative group-velocity dispersion using refraction[J]. Journal of the Optical Society of America A, 1984, 1(10): 1003-1006.

[52] Fork R L. Brito Cruz C H, Becker P C, et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Optics Letters, 1987, 12(7): 483-485.

[53] Baltuška A, Wei Z Y, Pshenichnikov M S, et al. Optical pulse compression to 5 fs at a 1-MHz repetition rate[J]. Optics Letters, 1997, 22(2): 102-104.

[54] Kane S, Squier J. Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems[J]. Journal of the Optical Society of America B, 1997, 14(5): 1237-1244.

[55] Ricci A, Jullien A, Forget N, et al. Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher[J]. Optics Letters, 2012, 37(7): 1196-1198.

[56] Yamashita M, Torizuka K, Sato T. A chirp-compensation technique using incident-angle changes of cavity mirrors in a femtosecond pulse laser[J]. IEEE Journal of Quantum Electronics, 1987, 23(11): 2005-2007.

[57] Szipöcs R, Spielmann C, Krausz F, et al. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers[J]. Optics Letters, 1994, 19(3): 201-203.

[58] Kärtner F X, Matuschek N, Schibli T, et al. Design and fabrication of double-chirped mirrors[J]. Optics Letters, 1997, 22(11): 831-833.

[59] Steinmeyer G. Femtosecond dispersion compensation with multilayer coatings: toward the optical octave[J]. Applied Optics, 2006, 45(7): 1484-1490.

[60] Matsubara E, Yamane K, Sekikawa T, et al. Generation of 26 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber[J]. Journal of the Optical Society of America B, 2007, 24(4): 985-989.

[61] Garduño-Mejía J, Greenaway A H, Reid D T. Programmable spectral phase control of femtosecond pulses by use of adaptive optics and real-time pulse measurement[J]. Journal of the Optical Society of America B, 2004, 21(4): 833-843.

方少波, 魏志义. 亚周期超快光场相干合成技术[J]. 光学学报, 2019, 39(1): 0126006. Shaobo Fang, Zhiyi Wei. Sub-Optical-Cycle Coherent Waveform Synthesis[J]. Acta Optica Sinica, 2019, 39(1): 0126006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!