光子学报, 2016, 45 (5): 0516001, 网络出版: 2016-06-06  

Si衬底上插入SiO2膜对Ag纳米颗粒陷光性能的影响

Influence of the Silica Films Inserted into Silicon Substrate on the Light Trapping Performance of Silver Nanoparticles
作者单位
华北电力大学 新能源电力系统国家重点实验室, 北京 102206
摘要
采用磁控溅射法在Si衬底上制备了SiO2介质膜, 系统地研究了SiO2膜引入对Ag纳米颗粒的表面覆盖率、形貌、形成机理和光学性质的影响.研究发现引入SiO2介质膜后, Ag纳米颗粒的表面覆盖率显著增加, 平均粒径明显降低.基于现有的Ag纳米颗粒形成机理, 提出了粗糙表面Ag膜断裂模型以解释其形貌发生变化的原因.紫外-可见光分光光度计测试表明, 引入SiO2膜并优化其厚度, 可使Ag纳米颗粒的偶极消光峰最大红移86nm, 但消光峰强度明显下降.数值模拟计算表明, 引入SiO2膜的Ag纳米颗粒所能散射的光子数量最小减少2×1018个.因此, 在Si衬底上沉积SiO2膜, 不利于Ag纳米颗粒陷光性能的提高.
Abstract
Introducing silica dielectric film deposited by magnetron sputtering on silicon substrates, the dependence of the surface coverage ratio, morphology, formation mechanism and optical properties for silver nanoparticles on silica dielectric film was exploited. The results indicate that the surface coverage ratios of silver nanoparticles increase but the mean diameters for silver nanoparticles decrease obviously after introducing silica dielectric film. The reason of morphological evolution for silver nanoparticles was explained by an improved model for silver film rupture based on the formation mechanism of silver nanoparticles. A red shift of up to 86 nm of the dipole extinction peak of silver nanoparticles is realized by adjusting the thickness of the silica film but the peak intensity decrease greatly, as analyzed by an ultraviolet-visible spectrophotometer. Numerical simulations of the optimized structures demonstrate that the number of scattered photons by the silver nanoparticles is decreased by as much as 2×1018 after inserting a silica layer. Therefore, it is undesirable to deposit silica layer on silicon substrate before silver nanoparticle formation for the light trapping performance of silver nanoparticles.
参考文献

[1] LIN Ting, ZHANG Yong-ai, CHU Zi-hang, et al. Study of controllable full resolution liquid crystal grating based on time division[J]. Acta Photonica Sinica, 2015, 44(11): 1105003

[2] ZHANG Wen-tao, ZHU Bao-hua, WANG Jie-jun. Simulation of transmission characteristics for multilayer film[J]. Acta Photonica Sinica, 2014, 43(Sup.1): 0131001

[3] LIU Zheng-qi, YU Mei-dong, HUANG Shan, et al. Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers[J]. Journal of Materials Chemistry C, 2015, 3(17): 4222-4226.

[4] LIU Jun, Wu Gen-Zhu, CHEN Da-ru, et al. Metallo-dielectric confined semiconductor microdisk lasers[J]. Acta Photonica Sinica, 2012, 41(12): 1464-1469

[5] LIU Gui-qiang, YU Mei-dong, LIU Zheng-qi, et al. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering[J]. Nanotechnology, 2015, 26(18): 185702.

[6] OH S J, CHHAJED S, POXSON D J, et al. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings[J]. Optics Express, 2013, 21(1): A157-A166.

[7] PILLAI S, BECK F J, CATCHPOLE K R, et al. The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions[J]. Journal of Applied Physics, 2011, 109(7): 073105.

[8] PEDRUEZA E, VALDES J L, CHIRVONY V, et al. Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell–Garnett modeling[J]. Advanced Functional Materials, 2011, 21(18): 3502-3507.

[9] GANGULY A, MONDAL A, DHAR J C, et al. Enhanced visible light absorption by TiO2 film patterned with Ag nanoparticles arrays[J]. Physica E: Low-dimensional Systems and Nanostructures, 2013, 54(12): 326-330.

[10] BECK F J, POLMAN A, CATCHPOLE K R. Tunable light trapping for solar cells using localized surface plasmons[J]. Journal of Applied Physics, 2009, 105(11): 114310.

[11] XU Rui, WANG Xiao-dong, SONG Liang, et al. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells[J]. Optics express, 2012, 20(5): 5061-5068.

[12] XU Yong-jun, CAI Qi-wen, YANG Xiao-xi, et al. Preparation of novel SiO2 protected Ag thin films with high reflectivity by magnetron sputtering for solar front reflectors[J]. Solar Energy Materials and Solar Cells, 2012, 107(2): 316-321.

[13] CHOY W C H, SHA W E I, LI Xuan-hua, et al. Multi-physical properties of plasmonic organic solar cells[J]. Progress in Electromagnetics Research, 2014, 146(1): 25-46.

[14] HEDAYATI M K, FAUPEL F, ELBAHRI M. Review of plasmonic nanocomposite metamaterial absorber[J]. Materials, 2014, 7(2): 1221-1248.

[15] HEDAYATI M K, JAVAHERIRAHIM M, MOZOONI B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials[J]. Advanced Materials, 2011, 23(45): 5410-5414.

[16] XU Rui, WANG Xiao-dong, LIU Wen, et al. Optimization of the dielectric layer thickness for surface-plasmon-induced light absorption for silicon solar cells[J]. Japanese Journal of Applied Physics, 2012, 51(4R): 483-490.

[17] XIANG Yong, LI Teng, SUO Zhi-gang, et al. High ductility of a metal film adherent on a polymer substrate[J]. Applied Physics Letters, 2005, 87(16): 161910.

[18] TRICE J, THOMAS D, FAVAZZA C, et al. Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments[J]. Physical Review B, 2007, 75(23): 235439.

[19] VIANA C E, SILVA A N R D, MORIMOTO N I, et al. Analysis of SiO2 thin films deposited by PECVD using an oxygen-TEOS-argon mixture[J]. Brazilian Journal of Physics, 2001, 31(2): 299-303.

[20] BAI Yi-ming, WANG Jun, CHEN Nuo-fu, et al. Condensed matter: electronic structure, electrical, magnetic, and optical properties: dipolar and quadrupolar modes of SiO2/Au nanoshell enhanced light trapping in thin film solar cells[J]. Chinese Physics Letters, 2011, 28(8): 087306.

[21] ZHANG Shu-guang, ZHANG Xing-wang, YIN Zhi-gang, et al. Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon[J]. Journal of Applied Physics, 2012, 112(1): 013112.

[22] GAO Hong-li, ZHANG Xing-wang, YIN Zhi-gang, et al. Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate[J]. Applied Physics Letters, 2012, 101(13): 133903.

[23] BAI Yi-ming, GAO Zheng, CHEN Nuo-fu, et al. Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure[J]. Applied Surface Science, 2014, 315(10): 1-7.

[24] BAI Yi-ming, WANG Jun, CHEN Nuo-fu, et al. Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells[J]. Science China Technological Sciences, 2010, 53(8): 2228-2231.

[25] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles[M]. New York, John Wiley & Sons, 2008.

白一鸣, 延玲玲, 王艳宁, 苏琳, 刘海, 陈诺夫, 姚建曦. Si衬底上插入SiO2膜对Ag纳米颗粒陷光性能的影响[J]. 光子学报, 2016, 45(5): 0516001. BAI Yi-ming, YAN Ling-ling, WANG Yan-ning, SU Lin, LIU Hai, CHEN Nuo-fu, YAO Jian-xi. Influence of the Silica Films Inserted into Silicon Substrate on the Light Trapping Performance of Silver Nanoparticles[J]. ACTA PHOTONICA SINICA, 2016, 45(5): 0516001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!