Photonics Research, 2017, 5 (5): 05000441, Published Online: Aug. 31, 2017  

Theoretical study of tunable chirality from graphene integrated achiral metasurfaces Download: 976次

Author Affiliations
Dalian University of Technology, Department of Biomedical Engineering, Dalian 116024, China
Copy Citation Text

Tun Cao, Yang Li, Xinyu Zhang, Yang Zou. Theoretical study of tunable chirality from graphene integrated achiral metasurfaces[J]. Photonics Research, 2017, 5(5): 05000441.

References

[1] V. M. Shalaev. Optical negative-index metamaterials. Nat. Photonics, 2007, 1: 41-48.

[2] X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, H. Giessen. Active chiral plasmonics. Nano Lett., 2015, 15: 4255-4260.

[3] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 2012, 11: 917-924.

[4] I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater. Highly strained compliant optical metamaterials with large frequency tenability. Nano Lett., 2010, 10: 4222-4227.

[5] T. Bu, K. Chen, H. Liu, J. Liu, Z. Hong, S. Zhuang. Location-dependent metamaterials in terahertz range for reconfiguration purposes. Photon. Res., 2016, 4: 122-125.

[6] T. T. Lv, Y. X. Li, H. F. Ma, Z. Zhu, Z. P. Li, C. Y. Guan, T. J. Cui. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep., 2016, 6: 23186.

[7] N. Strohfeldt, A. Tittl, M. Schäferling, F. Neubrech, U. Kreibig, R. Griessen, H. Giessen. Yttrium hydride nanoantennas for active plasmonics. Nano Lett., 2014, 14: 1140-1147.

[8] B. F. Soares, F. Jonsson, N. I. Zheludev. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett., 2007, 98: 153905.

[9] B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater., 2013, 25: 3050-3054.

[10] J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, X. He. Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Opt. Mater. Express, 2015, 5: 1962-1971.

[11] N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, A. Boltasseva. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett., 2012, 12: 5202-5206.

[12] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, H. Altug. Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349: 165-168.

[13] Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, F. Capasso. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett., 2013, 13: 1257-1264.

[14] Y. Cui, L. Kang, S. Lan, S. Rodrigues, W. Cai. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett., 2014, 14: 1021-1025.

[15] B. Ranjbar, P. Gill. Circular dichroism techniques: biomolecular and nanostructural analyses-a review. Chem. Biol. Drug Des., 2009, 74: 101-120.

[16] E. Plum, V. A. Fedotov, N. I. Zheludev. Extrinsic electromagnetic chirality in metamaterials. J. Opt., 2009, 11: 074009.

[17] BarronL. D., Molecular Light Scattering and Optical Activity (Cambridge University, 2004).

[18] C. Rizza, E. Palange, A. Ciattoni. Electromagnetic chirality induced by graphene inclusions in multilayered metamaterials. Photon. Res., 2014, 2: 121-125.

[19] M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen. Three-dimensional chiral plasmonic oligomers. Nano Lett., 2012, 12: 2542-2547.

[20] V. K. Valev, X. Zheng, C. G. Biris, A. V. Silhanek, V. Volskiy, B. De Clercq, V. V. Moshchalkov. The origin of second harmonic generation hotspots in chiral optical metamaterials. Opt. Mater. Express, 2011, 1: 36-45.

[21] M. Decker, M. W. Klein, M. Wegener, S. Linden. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett., 2007, 32: 856-858.

[22] M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, M. Wegener. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett., 2009, 34: 2501-2503.

[23] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325: 1513-1515.

[24] B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen. Large-area 3D chiral plasmonic structures. ACS Nano, 2013, 7: 6321-6329.

[25] T. W. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, K. Hinrichs. Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount. Opt. Mater. Express, 2013, 3: 439-451.

[26] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett., 2006, 97: 177401.

[27] V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater., 2013, 25: 2517-2534.

[28] R. Singh, E. Plum, W. Zhang, N. I. Zheludev. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt. Express, 2010, 18: 13425-13430.

[29] X. Liu, Y. Xu, Z. Zhu, S. Yu, C. Guan, J. Shi. Manipulating wave polarization by twisted plasmonic metamaterials. Opt. Mater. Express, 2014, 4: 1003-1010.

[30] T. Kan, A. Lsozaki, N. Kanda, N. Nemoto, K. Konishi, M. Kuwata-Gonokami, I. Shimoyama. Spiral metamaterial for active tuning of optical activity. Appl. Phys. Lett., 2013, 102: 221906.

[31] X. Tian, Z. Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res., 2016, 4: 146-152.

[32] G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, E. N. Economou. Optically controllable THz chiral metamaterials. Opt. Express, 2014, 22: 12149-12159.

[33] N. Kanda, K. Konishi, M. Kuwata-Gonokami. All-photoinduced terahertz optical activity. Opt. Lett., 2014, 39: 3274-3277.

[34] CardonaM.PeterY. Y., Fundamentals of Semiconductors (Springer, 2005).

[35] T. Cao, L. Zhang, R. E. Simpson, C. Wei, M. J. Cryan. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt. Express, 2013, 21: 27841-27851.

[36] Y. Zhao, M. A. Belkin, A. Alù. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun., 2012, 3: 870.

[37] R. Li, Z. Guo, W. Wang, J. Zhang, K. Zhou, J. Liu, J. Gao. Arbitrary focusing lens by holographic metasurface. Photon. Res., 2015, 3: 252-255.

[38] E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, N. I. Zheludev. Metamaterials: optical activity without chirality. Phys. Rev. Lett., 2009, 102: 113902.

[39] W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, J. Tian. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt. Lett., 2015, 40: 3185-3188.

[40] R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, N. I. Zheludev. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B, 2009, 80: 153104.

[41] H. F. Ma, G. Z. Wang, G. S. Kong, T. J. Cui. Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt. Mater. Express, 2014, 4: 1717-1724.

[42] T. Cao, Y. Li, C. W. Wei, Y. M. Qiu. Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials. Opt. Express, 2017, 25: 9911-9925.

[43] S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, J. K. W. Yang. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett., 2014, 14: 4023-4029.

[44] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 2007, 6: 183-191.

[45] S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, X. Zhang. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater., 2012, 11: 936-941.

[46] N. K. Emani, T. F. Chung, A. Boltasseva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, A. Boltasseva. Electrical modulation of Fano resonance in plasmonic nanostructures using grapheme. Nano Lett., 2013, 14: 78-82.

[47] N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, G. Shvets. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photon., 2015, 2: 216-227.

[48] Z. Q. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, L. Zhou. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 2015, 5: 041027.

[49] T. Chen, S. He. Frequency-tunable circular polarization beam splitter using a graphene-dielectric sub-wavelength film. Opt. Express, 2014, 22: 19748-19757.

[50] C. Wu, N. Arju, G. Kelp, I. Brener, G. Shvets. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun., 2014, 5: 3892.

[51] Y. Tang, A. E. Cohen. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science, 2011, 332: 333-336.

[52] Y. Tang, A. E. Cohen. Optical chirality and its interaction with matter. Phys. Rev. Lett., 2010, 104: 163901.

[53] A. García-Etxarri, J. A. Dionne. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B, 2013, 87: 235409.

[54] R. Stanley. Plasmonics in the mid-infrared. Nat. Photonics, 2012, 6: 409-411.

[55] A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, T. Taubner. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett., 2013, 13: 3470-3475.

[56] W. Dong, Y. Qiu, J. Yang, R. E. Simpson, T. Cao. Wideband absorbers in the visible with ultrathin plasmonic-phase change material nanogratings. J. Phys. Chem. C, 2016, 120: 12713-12722.

[57] I. H. Malitson, M. J. Dodge. Refractive-index and birefringence of synthetic sapphire. J. Opt. Soc. Am., 1972, 62: 1405.

[58] A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 1998, 37: 5271-5283.

[59] J. Sweet, B. C. Richards, J. D. Olitzky, J. Hendrickson, G. Khitrova, H. M. Gibbs, M. Wegener. GaAs photonic crystal slab nanocavities: growth, fabrication, and quality factor. Photon. Nanostr. Fundam. Appl., 2010, 8: 1-6.

[60] N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, K. Asakawa. Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes. IEEE J. Sel. Areas Commun., 2005, 23: 1315-1320.

[61] Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, I. Brener. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express, 2012, 20: 1903-1911.

[62] CST Computer Simulation Technology AG, “CST MICROWAVE STUDIO,” .

[63] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, F. Wang. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol., 2011, 6: 630-634.

[64] W. Zhu, I. D. Rukhlenko, M. Premaratne. Graphene metamaterial for optical reflection modulation. Appl. Phys. Lett., 2013, 102: 241914.

[65] G. W. Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivity model of grapheme. J. Appl. Phys., 2008, 103: 064302.

[66] E. Plum, V. A. Fedotov, N. I. Zheludev. Planar metamaterial with transmission and reflection that depend on the direction of incidence. Appl. Phys. Lett., 2009, 94: 131901.

[67] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 2002, 65: 066611.

[68] J. G. Gibbs, A. G. Mark, S. Eslami, P. Fischer. Plasmonic nanohelix metamaterials with tailorable giant circular dichroism. Appl. Phys. Lett., 2013, 103: 213101.

[69] M. Midrio, P. Galli, M. Romagnoli, L. C. Kimerling, J. Michel. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon. Res., 2014, 2: A34-A40.

[70] PlumE., “Chirality and Metamaterials,” Doctoral dissertation (University of Southampton, 2010).

[71] R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, A. Martínez. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays. Phys. Rev. B, 2009, 79: 075425.

[72] C. García-Meca, R. Ortuno, F. J. Rodríguez-Fortuño, J. Martí, A. Martínez. Double-negative polarization-independent fishnet metamaterial in the visible spectrum. Opt. Lett., 2009, 34: 1603-1605.

[73] N. Meinzer, E. Hendry, W. L. Barnes. Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Phys. Rev. B, 2013, 88: 041407.

[74] M. L. Nesterov, X. Yin, M. Schäferling, H. Giessen, T. Weiss. The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photon., 2016, 3: 578-583.

Tun Cao, Yang Li, Xinyu Zhang, Yang Zou. Theoretical study of tunable chirality from graphene integrated achiral metasurfaces[J]. Photonics Research, 2017, 5(5): 05000441.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!