红外技术, 2021, 43 (1): 26, 网络出版: 2021-04-15  

一种 CSS-SIFT复合图像配准算法

CSS-SIFT Composite Image Registration Algorithm
李培华 1,2,3,4章盛 1,2,3,4,*刘玉莉 1,2,3,4钱名思 1,2,3,4
作者单位
1 中航华东光电有限公司, 安徽芜湖 241002
2 安徽省现代显示技术重点实验室, 安徽芜湖 241002
3 国家特种显示工程技术研究中心, 安徽芜湖 241002
4 特种显示国家工程实验室, 安徽芜湖 241002
摘要
针对 SIFT算法的图像配准耗时长的问题, 提出一种 CSS-SIFT复合图像配准算法。 CSS-SIFT算法首先使用 CSS算法检测图像特征, 然后, 使用优化的 SIFT算法生成并降维图像特征描述子, 最后, 使用基于欧式距离和曼哈顿距离的优化双向匹配算法对图像特征进行匹配。仿真实验条件是通过计算机中仿真软件进行仿真实验, 统计图像特征数目、匹配数目、正确匹配数目、配准准确率、配准时间与配准时间下降率共 6个指标数据, 统计结果表明, CSS-SIFT算法在图像配准准确度方面与传统 SIFT算法、传统 SURF算法、Forstern-SIFT算法、Harris-SIFT算法、Trajkovic-SIFT算法相当, 但在图像配准耗时方面分别降低了 58.45%、10.68%、14.84%、16.21%与 4.63%, 为图像配准提供了一种解决方案。
Abstract
To address the time-consuming problem of image registration in the scale-invariant feature transform(SIFT) algorithm, a curvature scale space (CSS)-SIFT composite image registration algorithm is proposed in this paper. First, the CSS-SIFT algorithm uses the CSS algorithm to extract image features. Image feature descriptors are then generated and reduced by the optimized SIFT algorithm. Finally, an optimized two-way matching algorithm based on Euclidean and Manhattan distances is used for matching.A simulation experiment is conducted using simulation software, and six parameters of index data are employed, including the number of image features, number of matches, number of correct matches, registration accuracy, registration time, and registration time decline rate. Statistical results show that the CSS-SIFT algorithm performs as well as the following algorithms in terms of accuracy of image registration: traditional SIFT, traditional speeded-up robust features, Forstern-SIFT, Harris-SIFT, and Trajkovic-SIFT. In addition, time-consumption of image registration is reduced by 58.45%, 10.68%, 14.84%, 16.21%, and 4.63%, respectively, thus providing an effective solution for image registration.

李培华, 章盛, 刘玉莉, 钱名思. 一种 CSS-SIFT复合图像配准算法[J]. 红外技术, 2021, 43(1): 26. LI Peihua, ZHANG Sheng, LIU Yuli, QIAN Mingsi. CSS-SIFT Composite Image Registration Algorithm[J]. Infrared Technology, 2021, 43(1): 26.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!