光学学报, 2018, 38 (4): 0412005, 网络出版: 2018-07-10   

提高多频条纹投影相位提取精度的反向误差补偿法 下载: 1273次封面文章

Inverse Error Compensation Method for Improvement of Phase Recovery Accuracy of Multi-Frequency Fringe Projection
作者单位
1 合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
2 南阳理工学院机械与汽车工程学院, 河南 南阳 473004
引用该论文

毛翠丽, 卢荣胜. 提高多频条纹投影相位提取精度的反向误差补偿法[J]. 光学学报, 2018, 38(4): 0412005.

Cuili Mao, Rongsheng Lu. Inverse Error Compensation Method for Improvement of Phase Recovery Accuracy of Multi-Frequency Fringe Projection[J]. Acta Optica Sinica, 2018, 38(4): 0412005.

参考文献

[1] Zhang S, Yau S T. High-resolution real-time 3D absolute coordinate measurement based on a phase-shifting method[J]. Optics Express, 2006, 14(7): 2644-2649.

    Zhang S, Yau S T. High-resolution real-time 3D absolute coordinate measurement based on a phase-shifting method[J]. Optics Express, 2006, 14(7): 2644-2649.

[2] Hu Q Y, Huang P S, Fu Q L, et al. Calibration of a three-dimensional shape measurement system[J]. Optical Engineering, 2003, 42(2): 487-93.

    Hu Q Y, Huang P S, Fu Q L, et al. Calibration of a three-dimensional shape measurement system[J]. Optical Engineering, 2003, 42(2): 487-93.

[3] Jiang C F, Bell T, Zhang S. High dynamic range real-time 3D shape measurement[J]. Optics Express, 2016, 24(7): 7337-7346.

    Jiang C F, Bell T, Zhang S. High dynamic range real-time 3D shape measurement[J]. Optics Express, 2016, 24(7): 7337-7346.

[4] Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160.

    Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160.

[5] 达飞鹏, 盖绍彦. 光栅投影三维精密测量[M]. 北京: 科学出版社, 2011: 154- 174.

    达飞鹏, 盖绍彦. 光栅投影三维精密测量[M]. 北京: 科学出版社, 2011: 154- 174.

    Da FP, Gai SY. Three-dimensional precision measurement with raster projection[M]. Beijing: Science Press, 2011: 154- 174.

    Da FP, Gai SY. Three-dimensional precision measurement with raster projection[M]. Beijing: Science Press, 2011: 154- 174.

[6] LiuK. Real-time 3-D reconstruction by means of structured light illumination[D]. Lexington: University of Kentucky, 2010.

    LiuK. Real-time 3-D reconstruction by means of structured light illumination[D]. Lexington: University of Kentucky, 2010.

[7] Pan B, Kemao Q, Huang L, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letters, 2009, 34(4): 416-418.

    Pan B, Kemao Q, Huang L, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letters, 2009, 34(4): 416-418.

[8] Zhang C W, Zhao H, Zhang L, et al. Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry[J]. Measurement Science & Technology, 2015, 26(3): 035201.

    Zhang C W, Zhao H, Zhang L, et al. Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry[J]. Measurement Science & Technology, 2015, 26(3): 035201.

[9] Xiong C, Yao J, Chen J B, et al. A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection[J]. Theoretical and Applied Mechanics Letters, 2016, 6(1): 49-53.

    Xiong C, Yao J, Chen J B, et al. A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection[J]. Theoretical and Applied Mechanics Letters, 2016, 6(1): 49-53.

[10] Liu K, Wang Y C, Lau D L, et al. Gamma model and its analysis for phase measuring profilometry[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2010, 27(3): 553-562.

    Liu K, Wang Y C, Lau D L, et al. Gamma model and its analysis for phase measuring profilometry[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2010, 27(3): 553-562.

[11] Yatabe K, Ishikawa K, Oikawa Y. Compensation of fringe distortion for phase-shifting three-dimensional shape measurement by inverse map estimation[J]. Applied Optics, 2016, 55(22): 6017-6024.

    Yatabe K, Ishikawa K, Oikawa Y. Compensation of fringe distortion for phase-shifting three-dimensional shape measurement by inverse map estimation[J]. Applied Optics, 2016, 55(22): 6017-6024.

[12] Zheng D L, Da F P. Gamma correction for two step phase shifting fringe projection profilometry[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(13): 1392-1397.

    Zheng D L, Da F P. Gamma correction for two step phase shifting fringe projection profilometry[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(13): 1392-1397.

[13] Ma S, Quan C, Zhu R, et al. A fast and accurate gamma correction based on Fourier spectrum analysis for digital fringe projection profilometry[J]. Optics Communications, 2012, 285(5): 533-538.

    Ma S, Quan C, Zhu R, et al. A fast and accurate gamma correction based on Fourier spectrum analysis for digital fringe projection profilometry[J]. Optics Communications, 2012, 285(5): 533-538.

[14] Li Z W, Li Y F. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry[J]. Optics Letters, 2011, 36(2): 154-156.

    Li Z W, Li Y F. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry[J]. Optics Letters, 2011, 36(2): 154-156.

[15] Xu Z X, Chan Y H. Removing harmonic distortion of measurements of a defocusing three-step phase-shifting digital fringe projection system[J]. Optics and Lasers in Engineering, 2017, 90: 139-145.

    Xu Z X, Chan Y H. Removing harmonic distortion of measurements of a defocusing three-step phase-shifting digital fringe projection system[J]. Optics and Lasers in Engineering, 2017, 90: 139-145.

[16] Zuo C, Chen Q, Gu G H, et al. Optimized three-step phase-shifting profilometry using the third harmonic injection[J]. Optica Applicata, 2013, 43(2): 393-408.

    Zuo C, Chen Q, Gu G H, et al. Optimized three-step phase-shifting profilometry using the third harmonic injection[J]. Optica Applicata, 2013, 43(2): 393-408.

[17] Huang P S, Hu Q J, Chiang F P. Double three-step phase-shifting algorithm[J]. Applied Optics, 2002, 41(22): 4503-4509.

    Huang P S, Hu Q J, Chiang F P. Double three-step phase-shifting algorithm[J]. Applied Optics, 2002, 41(22): 4503-4509.

[18] Lei Z K, Wang C L, Zhou C L. Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation[J]. Optics and Lasers in Engineering, 2015, 66: 249-257.

    Lei Z K, Wang C L, Zhou C L. Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation[J]. Optics and Lasers in Engineering, 2015, 66: 249-257.

[19] 肖朝, 陈锋, 钟敏. 一种提升反向条纹测量精度的方法[J]. 激光与光电子学进展, 2016, 53: 111204.

    肖朝, 陈锋, 钟敏. 一种提升反向条纹测量精度的方法[J]. 激光与光电子学进展, 2016, 53: 111204.

    Xiao C, Chen F, Zhong M. Method for improving measurement accuracy of inverse fringe[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111204.

    Xiao C, Chen F, Zhong M. Method for improving measurement accuracy of inverse fringe[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111204.

[20] Cai Z W, Liu X L, Jiang H, et al. Flexible phase error compensation based on Hilbert transform in phase shifting profilometry[J]. Optics Express, 2015, 23(19): 25171-25181.

    Cai Z W, Liu X L, Jiang H, et al. Flexible phase error compensation based on Hilbert transform in phase shifting profilometry[J]. Optics Express, 2015, 23(19): 25171-25181.

[21] Zheng D L, Da F P, Qian K M, et al. Phase error analysis and compensation for phase shifting profilometry with projector defocusing[J]. Applied Optics, 2016, 55(21): 5721-5728.

    Zheng D L, Da F P, Qian K M, et al. Phase error analysis and compensation for phase shifting profilometry with projector defocusing[J]. Applied Optics, 2016, 55(21): 5721-5728.

[22] Zhang S. Comparative study on passive and active projector nonlinear gamma calibration[J]. Applied Optics, 2015, 54(13): 3834-3841.

    Zhang S. Comparative study on passive and active projector nonlinear gamma calibration[J]. Applied Optics, 2015, 54(13): 3834-3841.

[23] Su X Y. Zhou W S, von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 1992, 94(6): 561-573.

    Su X Y. Zhou W S, von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 1992, 94(6): 561-573.

[24] Lei S Y, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 2009, 34(20): 3080-3082.

    Lei S Y, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 2009, 34(20): 3080-3082.

[25] 赵立伟, 达飞鹏, 郑东亮. 离焦投影三维测量的二值光栅生成方法[J]. 光学学报, 2016, 36(8): 0812005.

    赵立伟, 达飞鹏, 郑东亮. 离焦投影三维测量的二值光栅生成方法[J]. 光学学报, 2016, 36(8): 0812005.

    Zhao L W, Da F P, Zheng D L. Method for binary grating generation using defocused projection for three-dimensional measurement[J]. Acta Optica Sinica, 2016, 36(8): 0812005.

    Zhao L W, Da F P, Zheng D L. Method for binary grating generation using defocused projection for three-dimensional measurement[J]. Acta Optica Sinica, 2016, 36(8): 0812005.

[26] 杨柳, 程筱胜, 崔海华, 等. 免疫于伽马非线性的八步相移法[J]. 激光与光电子学进展, 2016, 53(11): 111202.

    杨柳, 程筱胜, 崔海华, 等. 免疫于伽马非线性的八步相移法[J]. 激光与光电子学进展, 2016, 53(11): 111202.

    Yang L, Chen X S, Cui H H, et al. Eight-step phase shifting method being independent of gamma nonlinearity[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111202.

    Yang L, Chen X S, Cui H H, et al. Eight-step phase shifting method being independent of gamma nonlinearity[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111202.

[27] Zuo C, Huang L, Zhang M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103.

    Zuo C, Huang L, Zhang M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103.

毛翠丽, 卢荣胜. 提高多频条纹投影相位提取精度的反向误差补偿法[J]. 光学学报, 2018, 38(4): 0412005. Cuili Mao, Rongsheng Lu. Inverse Error Compensation Method for Improvement of Phase Recovery Accuracy of Multi-Frequency Fringe Projection[J]. Acta Optica Sinica, 2018, 38(4): 0412005.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!