作者单位
摘要
光学学报
2024, 44(1): 0106000
黄麟景 1周霄 2,3樊昕昱 1,*王峰 2,3,**[ ... ]何祖源 1
作者单位
摘要
1 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
2 南京大学智能光感知与调控技术教育部重点实验室,江苏 南京 210023
3 南京大学现代工程与应用工程学院,江苏 南京 210023
为了解决传统分布式光纤传感系统只针对单一变量进行测量的问题,研究人员近年来结合多种光纤传感测量机理,提出了一系列多机理融合的分布式光纤传感系统,使用同一系统实现多种参量的测量。综述了近年来多机理融合的分布式光纤传感技术,从不同散射机理相互结合的角度进行分类,介绍了不同的多机理融合的分布式光纤传感系统及其性能指标,并对其进行总结对比,最后展望了多机理融合的分布式光纤传感技术的发展前景。
传感器 光纤散射 多机理 光纤光学 光纤传感 
光学学报
2024, 44(1): 0106007
作者单位
摘要
1 上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
2 重庆前卫科技集团有限公司,重庆 401121
在水下移动可见光通信系统中,当传输距离改变时,因水具有较大固有吸收,接收光功率会发生显著变化。文章提出了一种基于增益反馈控制(GFC)的水下移动可见光通信技术,拓展了通信距离和视场角(FOV)的动态范围。在移动速度为0.13 m/s条件下,实现了通信距离0.9~5.2 m任意可调速率5.0 Mbit/s、像素为800×600且帧率(FPS)不为零的实时双工视频传输。与没有使用GFC方法的系统相比,其通信距离和FOV的动态范围分别增长了5.3和2.8倍。为了进一步验证该系统的性能,文章还测试了不同移动速度下系统的平均闪烁指数、数据传输中断概率及误码率(BER)。在通信距离的动态范围内,随着移动速度增大,平均闪烁指数及BER相应增大,但即使移动速度达到系统可实现的最大速度0.83 m/s时,通信仍未中断,说明该系统具有良好的鲁棒性,在水下移动可见光通信领域具有良好的应用前景。
可见光通信 移动通信 视频通信 动态范围 visible light communication mobile communication video communication dynamic range 
光通信研究
2023, 49(4): 68
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
提出一种将质子交换技术和刻蚀技术结合的体铌酸锂波导和器件加工方案,基于质子交换的铌酸锂晶体相变特性改变,降低了质子交换区直接刻蚀难度,结合质子交换的纵向折射率改变和刻蚀波导的横向结构改变,波导尺寸显著降低,采用粒子群算法优化波导尺寸,最小可达2.5 μm。基于该工艺方案设计了中心波长为1550 nm、四通道且通道间隔为400 GHz的阵列波导光栅,该阵列波导光栅的传输损耗约为6 dB,相邻通道间串扰均低于22 dB,整体尺寸仅为850 μm×620 μm,在高密度铌酸锂光子集成互连等场景具有较大的应用潜力。
光栅 铌酸锂 质子交换 粗波分复用 阵列波导光栅 
光学学报
2023, 43(13): 1305003
作者单位
摘要
1 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240
2 鹏城实验室,广东 深圳 518055
高精度温度传感器在地球物理、海洋科学、石油化工等领域具有广泛应用。针对传统光纤光栅温度传感器分辨率较低的问题,提出一种基于光纤光栅的高精度多点复用温度传感系统,该系统采用封装好的不同中心波长的π相移光纤光栅作为温度敏感单元,以扫频激光器和波分复用技术检测各光纤光栅谐振波长,并引入氰化氢标准气体吸收室作为波长参考,用非平衡马赫-曾德尔干涉仪补偿光源扫频过程中的非线性,以提升波长测量精度。实验实现了对10个温度传感探头的同时探测,温度分辨率达到10-4 ℃水平,测量范围达到0~100 ℃。该光纤光栅温度传感系统在高精度温度测量领域具有广阔的应用前景。
光纤光学 高精度温度传感 扫频激光 相移光纤光栅 光纤光栅封装 光纤光栅阵列 
光学学报
2023, 43(9): 0906001
作者单位
摘要
1 上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室, 上海200240
2 上海光织科技有限公司, 上海 200240
多芯光纤具有集成度高、传输容量大等优点, 为了实现其与单芯光纤阵列的连接, 提出一种基于高精度陶瓷插芯的自组装型低损耗多芯光纤扇入扇出(FIFO)器的设计及制备方法。通过仿真和实验确定了拉锥功率和拉锥速度等拉锥光纤的最优参数, 成功制备出高性能的七芯光纤FIFO器。实验采用的传输链路包含1对FIFO器及5 m长的七芯光纤, 得到7个通道的平均损耗为0.9 dB, 平均串扰为-52 dB。另外, 该FIFO器在波长为1550 nm处、长1 km的七芯光纤中实现了7×10 Gb/s无误码传输, 且各个通道具有良好的一致性。
空分复用 多芯光纤 扇入扇出器件 插入损耗 space division multiplexing, multi-core fiber, fan 
光通信技术
2022, 46(5): 89
作者单位
摘要
上海交通大学 电子信息与电气工程学院, 上海 200240
针对目前商用光谱仪无法在极微弱光测量环境下实现光谱探测的问题, 提出一种基于单光子探测器阵列的光谱测量系统, 利用单光子探测器在极微弱光环境下的探测能力, 将虚像相位阵列(VIPA)和反射式衍射光栅构成的二维色散结构与单光子探测器阵列相结合, 并通过实验测试得出系统的二维分光效果、相对光谱透射比曲线以及单光子探测性能。实验结果表明: 该系统不仅灵敏度高, 还实现了0.006 nm的波长分辨率;与目前普遍采用的基于时间相关单光子计数的光谱测量系统相比, 该系统具有更优的波长分辨率和更大的测量带宽。
单光子计数器 虚像相位阵列 二维光谱 淬灭电路 相对光谱透射比 single photon counter, virtual image phase array, 
光通信技术
2022, 46(5): 59
作者单位
摘要
1 上海交通大学 区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
2 中兴通讯股份有限公司, 广东 深圳 518055
3 移动网络和移动多媒体技术国家重点实验室, 广东 深圳 518055

系统地开展了基于光刻及湿法显影工艺制备的聚合物光波导散射损耗的理论及实验研究。研究了包括粗糙度、波导尺寸和工作波长等主要参数对散射损耗的影响, 采用激光共聚焦显微镜测量了光波导侧壁及上下表面的粗糙度。实验结果表明, 波导侧壁的平均粗糙度约为60nm, 是上下表面粗糙度的3倍。因此, 散射损耗主要由侧壁粗糙引起, 其大小是上下表面粗糙引入散射损耗的9倍。基于上述理论及实验结果, 通过优化波导设计, 制备了工作于1310nm波长、平均损耗为0.35dB/cm的低损耗单模聚合物光波导, 其作为高速高密度光背板的关键传输介质具有良好的应用前景。

光互连 聚合物波导 散射损耗 optical interconnect polymer waveguide scattering loss 
半导体光电
2022, 43(6): 1142
作者单位
摘要
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室,上海 200240

生物组织的吸收系数和散射系数与组织的生理状态相关,是检测人体健康状态的重要指标。当前双层生物组织模型的光学参数反演方案中,吸收系数和散射系数的预测精度受到上层组织厚度等参数的影响较大,限制了模型的实际应用范围。为此,提出一种对上层组织厚度等参数不敏感的吸收和散射系数反演方法。通过采集漫反射光信号的空间和时间分布信息,并利用卷积神经网络来反演双层生物组织的吸收系数和散射系数,在随机的上层组织厚度和折射率等参量下实现较高的吸收系数和散射系数反演精度。在仿真实验中,基于改进的蒙特卡罗模拟获得双层皮肤模型在不同空间探测位置处、不同时刻的漫反射光强信息,然后利用卷积神经网络实现对两层皮肤组织吸收系数和散射系数的预测。结果表明:在固定的上层组织厚度和折射率参数下,吸收系数和散射系数反演的平均相对误差均小于4%;而当上层组织厚度和折射率存在随机变化时,吸收系数和散射系数的平均相对误差仍小于8%。相较其他方法,所提的测量方案和反演算法进一步提升了反演精度和扩展了实际应用场景,为生物组织光学参数的无创测量提供了新思路。

生物光子学 组织光学参数 漫反射率 蒙特卡罗模拟 卷积神经网络 
激光与光电子学进展
2022, 59(6): 0617018
作者单位
摘要
1 桂林电子科技大学电子工程与自动化学院光子学研究中心, 广西 桂林 541004
2 长飞光纤光缆股份有限公司光纤光缆制备技术国家重点实验室, 湖北 武汉430074
3 武汉理工光科有限股份公司, 湖北 武汉 430000
4 北京航空航天大学仪器科学与光电工程学院, 北京 100191
5 国防科技大学气象海洋学院, 湖南 长沙 410000
6 哈尔滨工业大学可调谐激光技术国家级重点实验室, 黑龙江 哈尔滨 150001
7 电子科技大学信息与通信工程学院光纤传感与通信教育部重点实验室光纤光学研究中心, 四川 成都 611731
8 上海交通大学区域光纤通信网与新型光通信系统国家重点实验室, 上海 200240
9 香港理工大学电机工程系, 香港 999077
10 山东省光纤传感技术重点实验室, 齐鲁工业大学(山东省科学院)山东省科学院激光研究所, 山东 济南 250103
11 北京知觉科技有限公司, 北京 100085
12 燕山大学信息科学与工程学院, 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004

四十多年来,我国光纤传感技术在经济发展和市场需求的牵引下快速成长。针对我国光纤传感若干典型的细分技术领域,概括性地给出了各个细分技术的发展历程、技术现状及面临的主要问题,使读者能更好地理解我国光纤传感技术发展的样貌,把握我国光纤传感技术市场需求呈指数型增长的发展趋势。

传感器 光纤传感技术 细分技术领域 指数发展规律 发展趋势 
光学学报
2022, 42(1): 0100001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!