作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2 安徽理工大学电气与信息工程学院, 安徽 淮南 232001
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031安徽理工大学电气与信息工程学院, 安徽 淮南 232001
4 安徽大学物质科学与信息技术研究院, 信息材料与智能感知安徽省实验室, 安徽 合肥 230601
多轴差分吸收光谱仪(MAX-DOAS)结合计算机断层重建算法可获取目标痕量气体的空间分布情况。 为研究在具有背景浓度的条件下, 如城市背景下某个竖直截面上重建NO2空间分布的可行性, 设计了气体浓度可控条件下的验证性实验; 证明了利用MAX-DOAS在竖直平面重建NO2气体分布的可行性。 将充入标准气体的JGS1石英玻璃样品池作为研究对象, 使用两台MAX-DOAS采集光谱数据。 将气体浓度的梯度作为先验信息, 利用经典的ABOCS算法和Barzilai-Borwein算法重建了竖直平面内的NO2气体分布, 验证了利用MAX-DOAS在竖直平面内重建NO2气体空间分布的可行性, 同时确定了背景浓度对重建结果的影响。 研究结果表明, 以天空为背景的光谱作为参考谱和以空样品池为背景作为参考谱, 反演得到的NO2浓度非常接近, 因此研究对象中的样品池容器在NO2竖直平面分布重建方法中对实验结果的影响可以忽略。 实验中以市区为背景的MAX-DOAS具有较高的背景浓度, 特别是在仰角较低的情况下NO2背景浓度几乎达到6×1016 molec·cm-2, 以城市郊区没有明显的污染源为背景的MAX-DOAS, 背景浓度较低可以忽略。 重建结果显示, 当仰角为28°时, 气体沿光路的平均分子数密度为3.932 7×1015 molec·cm-2, 且在样品池内下部密度大, 上部密度小; 重建得到的SCD和测量得到的SCD符合比较好, 计算结果显示重建得到的气体分子数密度的峰值为5.77×1015 molec·cm-2, 与以城市郊区为背景的MAX-DOAS反演结果较为接近, 而以市区为背景时, 特别是仰角较小时, NO2背景浓度特别明显, 重建结果比测量结果的值小很多。 结果表明, 背景浓度在重建图像中表现为伪影, 影响对气体分布的观察, 而如果在重建算法时加入利用样品池内外气体存在浓度突变这一先验信息, 能够减轻背景浓度对重建结果造成的影响。
差分吸收光谱 浓度重建 多轴差分吸收光谱 迭代算法 数据拟合 Differential optical absorption spectrometer Gas reconstructing MAX-DOAS Iterative algorithms Data fitting 
光谱学与光谱分析
2023, 43(8): 2413
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室,安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230026
利用差分吸收光谱技术(DOAS)反演了我国第二代星载大气痕量气体差分吸收光谱仪(EMI-Ⅱ)的SO2斜柱浓度(SCD),并通过辐射传输模型SCIATRAN建立了SO2大气质量因子(AMF)的查找表,经去条带处理后获得SO2的垂直柱浓度(VCD)。以2021年10月底拉帕尔马岛火山区域为研究对象,基于EMI-Ⅱ数据反演的SO2 VCD与国外同类型载荷TROPOMI的结果一致,相关性系数R分别为0.89、0.90、0.92。此外,还将汤加海底火山的SO2反演结果与TROPOMI的监测数据进行对比,结果表明,EMI-Ⅱ观测结果与TROPOMI一致,都观测到此次SO2羽流的自东向西的传输过程。结合风场数据,计算了2022年1月14—15日汤加海底火山爆发产生的SO2排放通量,结果表明,利用EMI-Ⅱ载荷反演的火山区域SO2 VCD可靠性高,可实现全球火山爆发预警。
大气光学 差分吸收光谱 EMI-Ⅱ SO2垂直柱浓度 汤加海底火山 
光学学报
2023, 43(6): 0601006
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
3 安徽理工大学电气与信息工程学院, 安徽 淮南 232001
大气痕量气体差分吸收光谱仪(EMI)是一种紫外可见成像光谱仪, 主要用于实现高空间分辨率的全球每日大气痕量气体浓度反演。 EMI在轨运行期间, 受空间环境影响, 元器件性能随时间推移会不断衰变。 为有效监测其衰变状况, 利用载荷对地各轨0级数据解析出在轨温度, 实现长期在轨温度监测; 通过计算各轨道星下点黑暗时的暗背景图像噪声的均值和标准差, 实现CCD(charge-coupled device detectors)暗背景噪声随时间变化趋势监测, 进一步评估空间粒子对CCD像素点的损伤; 利用多次在轨测量的内部白光光源在CCD上的响应, 评估CCD探测器在轨像素性能和辐射通量的变化; 使用EMI在轨测量的0级太阳光谱数据, 结合发射前实验室测试得到的二阶高斯函数模型, 用最小二乘法反演在轨仪器光谱响应函数(ISRF), 实现仪器光谱响应函数的在轨实时更新; 利用石英漫反射板(QVD)、 备用漫反射板(RSD)多次测量的太阳光谱, 计算石英漫反射板在轨相对衰变因子, 修正辐射定标系数, 实现漫反射板在轨衰变校正。 研究表明, EMI载荷在轨两年以来, 温度稳定, 各通道暗背景均值年增加率约0.25%~1%, 暗背景标准差震荡幅度在1.5%以内; 在轨ISRF函数变化幅度约2.3%; 内部白光源光路响应变化小于1%, 石英漫反射板年衰变率UV2通道小于1.75%, VIS1通道小于1%, VIS2 通道小于0.5%。
大气痕量气体差分吸收光谱仪 0级数据 在轨衰变 监测 Environmental trace gases monitoring instrument Level 0 data On-orbit degradation Monitoring 
光谱学与光谱分析
2022, 42(3): 686
作者单位
摘要
中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 安徽 合肥 230031
成像差分吸收光谱技术是成像光谱技术和差分吸收光谱技术的结合, 能够采集图谱合一的数据立方, 并通过光谱反演得到痕量气体浓度的二维分布信息。 地基IDOAS仪器通过安装平台的水平旋转实现摆扫成像, 可用于识别污染气体的排放源和监测气体的扩散情况。 然而和所有的成像光谱技术相类似, 地基IDOAS也容易出现条带噪声的问题, 会产生相应的伪结构, 影响后续的信息提取和数据分析。 目前星载和机载IDOAS中常见的条带噪声去除算法有均匀区域校正法、 传输模型模拟法、 傅里叶变换频域滤波法、 多项式拟合法等, 应用到地基仪器中均存在不适用的问题。 介绍了一种基于权重变分模型的条带噪声去除算法, 该算法首先通过分块自适应阈值分割得出表征遮挡区域的权重矩阵, 然后利用条带噪声的方向性和稀疏性建立各向异性的变分模型, 最后通过交替方向乘子算法迭代求解。 为检验去条带算法的可靠性, 使用稀疏、 稠密、 周期、 随机、 整行、 部分、 单行、 多行等多种模拟噪声进行了性能测试。 测试结果证明权重变分算法能够有效去除各种常见的条带噪声, 目视效果和四种全参考评价指标均有良好的表现。 地基IDOAS于2018年夏季在四川乐山进行了外场实验, 实验中仪器的水平扫描范围覆盖360°全方位角, 扫描间隔为1°, 垂直方向仪器同时采集0°~30°仰角内的光谱。 仪器的积分时间设置为500 ms, 每组全景扫描的工作时间约为15 min。 利用DOAS技术对采集到的太阳散射光谱进行反演, 最终得到的NO2和SO2气体的二维浓度分布图的像素大小为360×48。 从反演结果来看, 条带噪声对不同时间和不同气体的观测结果的影响大小均不同。 经权重变分算法处理后, 多组NO2和SO2浓度分布中的条带噪声情况得到极大的改善, 并且没有出现过度平滑的情况。 结果表明, 该算法适用于地基IDOAS数据的条带噪声去除。
成像差分吸收光谱 条带噪声 变分法 光学遥感 Imaging differential optical absorption spectroscopy Stripe noise Variation Optical remote sensing 
光谱学与光谱分析
2022, 42(2): 627
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 安徽理工大学电气与信息工程学院, 安徽 淮南 232001
为保障大气痕量气体差分吸收光谱仪(EMI)二级反演数据的有效性和可靠性,需长期监测仪器在轨辐射定标准确性和稳定性。首先,根据EMI在轨测量的太阳光谱和星下点辐亮度,计算了南极洲和格陵兰岛永久冰雪地面选定数据区域的表观反射率时间序列,并建立了太阳天顶角和表观反射率的4阶双向反射分布函数(BRDF)模型。然后,利用4阶BRDF模型对2018~2020年的表观反射率数据序列进行归一化处理,得到了表征EMI定标准确性和稳定性的指标。结果表明,基于BRDF模型得到的表观反射率预测值与实测值相关系数高于0.9;用BRDF模型对表观反射率进行归一化处理后,得到的仪器辐射定标不确定度范围为2%~5%;UV2、VIS1通道两年总衰减的范围为-0.5%~0.5%,VIS2通道的两年总衰减约为1.9%,即EMI在轨运行两年间的辐射响应稳定性较高。
大气光学 大气痕量气体差分吸收光谱仪 大气表观反射率 双向反射函数分布模型 辐射定标精度 辐射定标稳定性 
光学学报
2022, 42(6): 0601001
作者单位
摘要
1 中国科学院空天信息创新研究院/北京师范大学, 遥感科学国家重点实验室, 北京 100101
3 中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
4 国家卫星气象中心, 北京 100081
5 东北石油大学计算机与信息技术学院, 黑龙江 大庆 163318
星载痕量气体差分吸收光谱仪(EMI)是我国第一台用于监测对流层和平流层痕量气体的高光谱分辨率成像光谱仪。 为了充分了解载荷的特点, 更好地利用1级数据进行痕量气体反演, 本研究对EMI实测的辐照度和辐亮度数据进行了综合评价。 研究表明EMI紫外2波段(UV2)和可见光1波段(VIS1)的狭缝函数都表现出明显的行依赖性, 其随行波动的标准差是OMI和TROPOMI的6倍以上。 对不同行采用不同的狭缝函数, 可以提高辐照度光谱的定标精度, 进而提高痕量气体反演精度。 EMI辐照度和辐亮度数据都有波长漂移现象, 平均漂移量分别为0.015和0.03 nm, 有明显的行依赖性。 目前的波长漂移量满足设计指标(0.05 nm)的要求, 但在痕量气体反演过程中仍需进行波长精校准。 EMI辐照度数据与OMI和TROPOMI同一天测量的辐照度以及参考太阳光谱高度一致(r>0.95), 绝对偏差小于4.3%; 通过对比在洁净太平洋地区无云像元的平均辐亮度数据发现, EMI与OMI和TROPOMI也有很好的一致性(r>0.93), 平均偏差小于13.2%; 说明EMI数据辐射定标精度较高。 研究表明当前EMI载荷数据质量能够满足痕量气体反演的要求, 可为后续国产载荷的研制和数据质量评估方案提供参考。
星载痕量气体差分吸收光谱仪 定标 狭缝函数 数据质量 GF-5 EMI Wavelength calibration Slit function Data quality GF-5 
光谱学与光谱分析
2021, 41(12): 3881
作者单位
摘要
中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
云参数是痕量气体反演过程中重要的输入参数, 对其准确反演具有重要意义。基于 2019 年 3 月大气痕量气体差分吸收光谱仪 EMI 的观测数据, 利用 O4 在 477 nm 处的吸收特性进行有效云量的反演。为验证 EMI 云量反演的准确性, 将 EMI 与 TROPOMI 的反演结果进行对比分析, 并对 2019 年 3 月 2 日、6 日、9 日和 10 日 EMI 和 TROPOMI 整天的云量进行了相关性分析, 相关性 R 分别为 0.752、0.712、0.764 和 0.762, 表明二者具有良好的相关性。进一步选取了沙漠、海洋、陆地三个不同区域的云量分析了不同下垫面情况云量的分布特征, 发现在这三个区域, EMI 和 TROPOMI 的云量都具有较好的一致性, 并且海洋上空云量较低, 陆地上空云量较高, 而沙漠上空云量变化频繁。
 大气痕量气体差分吸收光谱仪 有效云量 cloud environmental trace gas monitoring instrument effective cloud fraction TROPOMI TROPOMI 
大气与环境光学学报
2021, 16(3): 223
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230036
3 安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
利用差分吸收光谱技术 (DOAS) 反演了我国首个星载大气痕量气体差分吸收光谱仪 (EMI) 的臭氧斜柱浓度 (SCD), 通过 SCIATRAN 辐射传输模型建立了大气质量因子 (AMF) 的查找表, 最终得到 EMI 的臭氧垂直柱浓度 (即臭氧柱总量)。将 EMI、OMI 和 TROPOMI 于 2018 年 11 月 2 日获得的南极区域臭氧柱总量进行了对比分析, 三者均观测到南极中高纬度 (30° S~70° S) 的臭氧高值区域与南极内陆 (75° S~90° S) 的臭氧低值区域, 且 EMI 与 OMI、TROPOMI 的臭氧柱总量相关性 (R2) 分别为 0.977 和 0.979。进一步将 EMI 反演的臭氧柱总量与南极长城站 (62.22 S, 58.96 W) 地基天顶散射光差分吸收光谱仪 (ZSL-DOAS) 反演的臭氧柱总量进行对比, 二者相关性 (R2) 为 0.926。
大气痕量气体差分吸收光谱仪 差分吸收光谱技术 南极 臭氧柱总量 查找表 environmental trace gases monitoring instrument differential optical absorption spectroscopy Antarctica total ozone columns lookup table 
大气与环境光学学报
2021, 16(3): 215
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230036
澳大利亚 2019-2020 年发生了大规模的森林火灾, 本次火灾在六个月的时间内烧毁了超过 800 万公顷的桉树林。利用大气痕量气体差分吸收光谱仪 (EMI) 对澳大利亚火灾期间的 NO2 变化情况进行了分析。研究发现, 2019 年 11 月, 澳大利亚东南区域的 NO2 浓度及分布相比往年同期, 出现明显的增长趋势。同时具体针对澳大利亚两大国家公园的火灾, 研究了 NO2 相对浓度的频率分布与火灾程度和频次的关系, 发现这两个地点 2019 年 11 月 NO2 的相对浓度频率也出现了明显的增高, 表明森林火灾是导致部分区域 NO2 浓度升高的主要原因。本工作的开展也证明了 EMI 在重大污染事件监测上的可行性。
大气痕量气体差分吸收光谱仪 澳大利亚森林火灾 NO2 垂直柱浓度 火灾频次 environmental trace gases monitoring instrument Australian forest fires NO2 vertical column fire frequency 
大气与环境光学学报
2021, 16(3): 207
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230036
于 2018 年 5 月 9 日搭载高分五号卫星发射的大气痕量气体差分吸收光谱仪 (EMI) 为紫外可见波段高分辨率成像光谱仪。为考察其在轨光谱性能, 首先采用波长寻峰法即以太阳 Fraunhofer 线作为特征峰以快速获取载荷的光谱范围, 然后采用谱线匹配法获取载荷空间维度的光谱弯曲值, 最后采用光谱拟合法获取光谱分辨率的变化。寻峰法通过与标准 Fraunhofer 线进行比对找寻特征峰, 得到其标准波长及对应像元, 经二阶多项式拟合可得到像元-波长对应关系。谱线匹配法通过 Pearson 相关系数法作为判据, 即利用两谱线之间相关系数作为匹配结果的判断条件, 得到测量谱线与标准谱线间的偏移值, 定标结果满足定标精度高于 0.05 nm 的要求。光谱拟合法通过求解将测量谱与高分辨率太阳参考谱拟合, 可以分析光谱分辨率变化。对 2019 年 1 月 7 日全天 15 轨数据的分析结果表明, 光谱分辨率在一天内的变化一致, 其单行标准差不超过 0.01, 因此在之后仪器长时间运作或受到干扰情况下, 利用此方法对其性能衰变进行分析具有重要意义。
大气痕量气体差分吸收光谱仪 光谱定标 光谱匹配 狭缝函数 environmental trace gases monitoring instrument spectral calibration spectral matching slit function 
大气与环境光学学报
2021, 16(3): 177

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!