作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
高功率650~660 nm波段激光器在可见光光电对抗领域具有重要作用,目前该波段光源由固体激光器通过半导体激光器泵浦并倍频输出,输出功率高、光束质量近衍射极限,但转换效率低。半导体激光器的转换效率高,但输出功率低,需要通过增加激光单元的方法提升功率,并通过激光合束的方式提升光束质量。文中提出外腔光谱合束的650 nm波段半导体激光器结构,通过实验验证可实现连续功率为7.3 W、光谱线宽为6.45 nm、电光转换效率为23.4%的650 nm波段激光输出,光束质量为M2X=1.95,M2Y=11.11,接近固体激光器,未来通过增加合束的激光单元数量并结合偏振合束可以获得更高功率的650 nm波段激光。
半导体激光器 激光光源 光谱合束 高光束质量 semiconductor laser laser light source spectral beam combination high-beam quality 
红外与激光工程
2023, 52(11): 20230198
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春 130033
2 吉光半导体科技有限公司,吉林 长春 130022
3 东莞方孺光电科技有限公司,广东 东莞 523822
4 陆军装备部驻北京地区军事代表局,北京 100166
针对目前铜、金等金属材料加工的实际应用需求,开展了连续输出功率500 W的光纤耦合输出蓝光半导体激光加工光源研究。基于平面窗口TO封装的蓝光半导体激光单管器件,设计采用长后工作距的快轴准直镜和慢轴准直镜分别准直,获得低发散角、高光束质量的单元准直光束;结合二维空间合束、偏振合束和光纤耦合,将144个蓝光单管器件耦合进200 μm/NA 0.22光纤,通过ZEMAX软件对半导体激光光路进行光线追踪模拟;并从实验上实现,3 A电流驱动下,200 μm/NA 0.22光纤输出连续功率523 W,电光转换效率29 %。该激光光源具有直接加工铜、金等材料的能力。
蓝光半导体激光器 光纤耦合 激光合束 激光加工 blue diode laser fiber-coupled laser beam combination laser processing source 
发光学报
2023, 44(7): 1308
作者单位
摘要
中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林 长春 130033
针对激光淬火在大型风电轴承生产中的实际需求,研制了一种功率高达15 kW的光纤耦合半导体激光淬火光源。该光源先采用915 nm和976 nm两个波段各8个宏通道冷却技术封装的半导体激光微巴条阵列作为发光单元,进行空间、偏振及波长合束,在光纤芯径为200 μm、数值孔径为0.22的光纤中实现了超过800 W的连续输出,电光转换效率整体达到45%以上。再通过19×1光纤合束器对19个800 W模块进行合束,由输出端口光纤直径为1 mm的光纤耦合输出。光束经过由微透镜阵列与聚焦镜复合的加工头,光斑匀化,最终输出了功率大于15 kW、光斑尺寸为165 mm × 25 mm的激光束,满足了大型风电主轴轴承滚道面淬火需求。
激光器 半导体激光器 光纤耦合 合束 激光淬火 
中国激光
2023, 50(5): 0501004
李雪 1,2张继业 1,*张建伟 1张星 1,3,**[ ... ]王立军 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春 130033
2 中国科学院大学材料与光电研究中心,北京 100049
3 长春中科长光时空光电技术有限公司,吉林 长春 130102
本文报道了一种结构紧凑的垂直外腔面发射激光器(Vertical-External-Cavity Surface- Emitting Laser,VECSEL)及其双波长调控。通过调控泵浦光功率,实现了VECSEL输出的两个激光波长之间的相互转换,双波长的间隔接近50 nm。VECSEL的输出功率曲线呈现明显的两次翻转,翻转点对应了激射波长的转换。这是由于泵浦功率变化改变了增益芯片内部的温度,进而通过热调谐使得发光区增益峰值被调谐到腔模的不同位置。在0 ℃时,每个激射波长的最大输出功率都在1.5 W以上。随着泵浦功率的改变,激射波长可以在950 nm和1000 nm之间切换,同时还可以在1.5 W以上的功率水平下实现双波长同时激射。这种可切换波长及双波长同时激射的VECSEL器件在光调制、差频等领域有较大应用潜力。
垂直外腔面发射半导体激光器 波长调控 双波长 vertical external cavity surface emitting laser switchable wavelength dual-wavelength 
红外与毫米波学报
2023, 42(1): 14
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春 130033
2 中国科学院大学,北京 100049
3 军事科学院系统工程研究院,北京 102300
光谱合束是提升高功率半导体激光器光束质量和亮度的关键技术之一。增加激光单元数量是提升光谱合束功率的主要途径,但同时造成合束光学元件尺寸变大,激光谐振腔变长不利于光谱合束光源的实际应用。提出了分离反射式中继成像光谱合束结构,将大尺寸中继成像镜分解成小尺寸的柱面反射镜阵列,每个激光线阵独立成像。最终12个激光线阵共计228个激光单元的光谱合束的输出激光功率为442.9 W,电光转换效率为41.8%,光谱范围为777.12~811.28 nm,光参量积为4.00 mm×mrad,与单元激光接近。所提结构为多激光单元光谱合束提供了一种可行方案,有利于激光器的工程应用。
激光器 半导体激光器 光谱合束 分离反射式中继成像 高功率 
中国激光
2022, 49(23): 2301001
作者单位
摘要
1 辽宁科技学院电气与信息工程学院 机器人工程系,辽宁 本溪 117004
2 华晨宝马汽车有限公司,辽宁 沈阳 110000
3 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春 130033
4 中国科学院大学 材料科学与光电技术学院,北京 100049
报道了利用垂直外腔面发射激光器(Vertical external cavity surface emitting laser,VECSEL)的增益谱与腔模的大失配设计实现VECSEL双波长同时激射的方法,设计了稳定的振荡腔结构,理论预测了这种VECSEL的三种工作状态并进行了实验验证。随着VECSEL泵浦功率增加,增益芯片内部工作温度逐步升高,VECSEL依次出现带边波长激射、双波长激射及腔模波长激射三种工作状态。最初VECSEL的激射波长位于带边模式决定的激光波长(952.7 nm),随着泵浦功率增加,增益芯片热效应增强,腔模波长与带边波长出现模式竞争,此后出现双波长激射现象。双波长峰值强度接近时VECSEL激光输出功率达到359 mW,激光波长分别位于954.2 nm和1 001.2 nm,在该位置附近VECSEL的输出功率曲线呈现明显的二次阈值现象。当泵浦功率持续增加,激光输出波长变为腔模波长激射,激光波长位于1 002.4 nm。在单波长及双波长工作状态下VECSEL的光斑形貌均为高斯形貌的圆形对称激光光束,激光光束发散角半角由5.7°增加到7.9°。这种单芯片双波长输出VECSEL方案未来在抗干扰激光雷达以及频率转换太赫兹激光等方面有着很好的应用潜力。
双波长面发射激光器 模式竞争 激光雷达 频率转换 dual-wavelength lasing mode competition LiDAR frequency conversion 
发光学报
2022, 43(8): 1266
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2 中国科学院大学 材料与光电研究中心, 北京 100049
垂直腔面发射激光器(Vertical-cavity surface-emitting laser, VCSEL)是40多年前被发明的, 具有很多独特的优势, 例如尺寸小、功耗低、效率高、寿命长、圆形光束以及二维面阵集成等。近年来, VCSEL市场发展迅速, 在5G通信、光信息存储、3D传感、激光雷达、材料加工以及激光显示等领域被广泛应用。针对不同的应用需求, VCSEL的功率、速率、能效、高温性能以及波长的多样性等性能都有了长足的进步。本文首先介绍了VCSEL的研究历程和优点特性; 综述了VCSEL在高功率、高速、高温下工作等方面的研究进展和应用现状; 最后对VCSEL的最新应用做了介绍, 展望了VCSEL的市场。
垂直腔面发射激光器 高功率 高速 高温 vertical-cavity surface emitting laser(VCSEL) high power high speed high temperature 
发光学报
2020, 41(12): 1443
张卓 1,2宁永强 1张建伟 1,*张继业 1,2[ ... ]王立军 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室, 吉林 长春 130033
2 中国科学院大学材料与光电研究中心, 北京 100049
1160 nm波段垂直外腔面发射半导体激光器(VECSEL)是医用橙黄激光的基频光源,但是其发光区的高应变InGaAs量子阱会引起严重的应变积累效应,限制高功率输出。提出一种在单个发光区内采用GaAsP材料对高应变InGaAs量子阱进行二次补偿的方法,保证发光区内的光学吸收层具有高的材料生长质量。提出含Al吸收层的结构,以降低GaAsP势垒引起的能带阻挡效应,提高了发光区光生载流子的注入效率。所制备的VECSEL器件激光波长为1160 nm,输出功率达1.02 W,并获得圆形对称的输出光斑形貌,光斑在正交方向上的发散角分别为10.5°和11.9°。
激光物理 半导体激光器 光泵浦垂直外腔面发射半导体激光器 增益芯片 应变量子阱 
中国激光
2020, 47(7): 0701020
作者单位
摘要
1 华南农业大学电子工程学院, 广东 广州 510642
2 华南农业大学园艺学院, 广东 广州 510642
叶绿素含量是衡量植物营养和病虫害发生情况的重要指标。 传统的分光光度法对植物叶片破坏性较大且无法实时、 快速、 无损地获取叶绿素含量。 新兴的利用叶绿素仪测量叶绿素相对含量(以下简称SPAD值)的方法不能定量获取实际含量。 光学辐射传输模型PROSPECT从生物物理、 化学的角度以及能量传输的过程出发, 定量描述了叶片色素、 水分、 结构参数等对叶片反射光谱的影响。 因此, 提出利用PROSPECT模型同时反演蔬菜叶片叶绿素含量和SPAD值, 实时、 快速、 无损、 定量获取植物叶片叶绿素的含量。 第一, 多次测量三种蔬菜叶片的反射光谱, 并用叶绿素仪测量SPAD值。 然后, 预处理光谱数据, 获得平均反射率光谱。 第二, 以欧式距离为评价函数, 利用PROSPECT模型对实测反射率光谱进行拟合。 拟合过程中三种蔬菜欧式距离最大为0.008 9, 最小为0.006 4, 平均为0.007 5, 表明该模型能够很好地拟合蔬菜叶片的反射率光谱。 第三, 根据拟合结果, 反演叶绿素含量和透射率光谱, 再根据透射率光谱获取叶片在940和650 nm波长处的光透过率, 计算叶片的反演SPAD值。 第四, 建立反演叶绿素含量、 反演SPAD值与实测SPAD值的关系模型。 结果表明: (1)利用该模型反演得到的叶绿素含量值与实测SPAD值有较好的线性关系, 其关系模型为: y=1.463 3x+16.374 3, 两者相关系数为0.927 1, 模型的决定系数为0.862, 均方根误差为2.11; (2)利用该模型反演得到的SPAD值与实测SPAD值之间线性关系较好, 其关系模型为: y=0.986 9x-0.668 3, 两者相关系数为0.845 1, 模型的决定系数为0.714 3, 均方根误差为3.380 2。 研究表明, 通过测量植物叶片的反射率光谱, 利用PROSPECT模型可以无损、 定量地获取蔬菜叶片的叶绿素含量和SPAD值。 该方法可推广至其他植物的叶绿素测量和实时监测, 为变量施肥、 精准种植提供可靠的数据支持。 研究结果对蔬菜生长态势的无损监测具有重要的意义。
高光谱 蔬菜叶片 叶绿素含量 SPAD值 反演 Hyperspectral Vegetable leaf Chlorophyll content SPAD value Inversion 
光谱学与光谱分析
2019, 39(10): 3256
作者单位
摘要
1 西南交通大学 牵引动力国家重点实验室,成都 610031
2 西南科技大学 计算机科学与技术学院,四川 绵阳 621010
显微测量中倾斜会导致显微图像的变形。本文利用多光束改进传统的激光三角法,提出一种多光斑激光三角法检测光学成像系统倾斜角度和方向。首先利用双楔镜分离扩束后的激光光束,形成近似平行的四束光束;然后将四束光束同时投射到平面镜上,反射后利用CCD 接收到四个光斑。由于四个光斑间距的变化只与成像系统倾斜角度有关,对成像系统前后的平移不敏感,因此避免了平移带来的影响。通过计算四个光斑间距的变化可以补偿成像系统倾斜角度,减少倾斜所带来的图像变形。实验结果表明, 构建的多光斑激光三角法测量光路能够准确快速的检测出倾斜角度变化。该方法可以应用在固体核径迹检测、面型检测等要求检测小角度变化的领域。
光学检测 激光三角法 光斑 optical inspection laser triangulation method light spot 
光电工程
2016, 43(1): 0018

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!