作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林长春30033
2 中国科学院大学,北京100049
3 2040部队,青海海东810699
为了解决大视场巡天望远镜中大口径透镜支撑问题,提出了一种双级柔性支撑结构,既可以保证透镜位置精度和面形精度,又能够克服镜框结构弹性变形的影响。首先,详细阐述了大口径光学透镜支撑结构设计中的难点及所提出的双级柔性支撑结构方案,并详述了该支撑结构克服镜框弹性变形的机理和优势。然后,根据双级柔性支撑结构的组成部分以及结构特征,基于欧拉薄梁理论,推导了柔性支撑单元的结构力学模型。然后,假设透镜为刚体,根据在不同姿态下透镜的力平衡和柔性支撑单元的变形协调条件,推导了该柔性支撑结构的整体刚度模型,包括了轴向刚度、横向刚度以及转动刚度。最后,以640 mm口径实验透镜为例,采用数值仿真方法分别模拟了刚性支撑、单级柔性和双级柔性支撑情况下,镜框弹性变形对镜面面形精度的影响。在镜框弹性变形非常大的情况下,双级柔性支撑结构下的镜面面形精度由20 nm下降到50 nm仅下降了2.5倍。此外,利用Zygo干涉仪对实验透镜下表面干涉检测,最佳的面形精度为0.05λ,达到了加工状态,进一步验证了所提出的双级柔性支撑结构的优越性。
光学透镜 双级柔性 支撑结构 面形精度 数值仿真 Optical lens bi-flexible mounting structure surface precision numerical simulation 
光学 精密工程
2021, 29(8): 1867
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为更好地实现地基大口径望远镜库徳光路的集成装调, 在三个层次上对其误差进行分析, 并利用“Brownian Bridge”过程建立了库徳光路误差模型。首先, 基于光径方程分析了库徳光路在大气扰动影响下的光线偏离情况; 其次, 分析了动态误差所引起的光学模糊以及重力作用下的累积印透效应; 最后, 根据“Brownian Bridge”过程, 在充分考虑误差闭合链的情况下, 建立了库徳焦点位置误差的模型。结果表明: 即使在0.4 ℃/m的温差下, 大气扰动也可以引起0.2″左右的偏差, 且与2.3 mm的大气相干长度等效。同时, 由于折光补偿的符号是一致的, 故无法依靠多次测量平均抵消大气扰动的影响。根据改进的误差模型, 库徳焦点的位置误差与基于独立同分布的假设所得的结果相比, 降低了约20%, 即更充分地考虑了误差闭合的情况。
大口径望远镜 库徳光路 误差分析 large telescope Coude optics system error analysis Brownian Bridge Brownian Bridge 
红外与激光工程
2019, 48(3): 0318001
明名 1,2,*陈涛 1,2徐天爽 3
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 长春 130033
2 中国科学院大学, 北京 100049
3 吉林大学 机械与航空航天工程学院, 长春 130012
在1.2 m车载望远镜的基础上, 通过机上折轴卡塞格林焦点, 将主光学系统与白天成像系统相连, 实现了白天高分辨成像.该系统采用短波红外波段, 在精密跟踪的同时, 校正大气波前整体倾斜.近红外波段的双通道成像系统, 通过在焦与离焦像面同时采集后, 利用相位差异技术来提高成像分辨率.该系统探测能力达到5等星, 成像分辨率接近两倍衍射极限, 观测时间比自适应系统延长6 h.
车载式 光学望远镜 光学设计 成像分辨率 相位测量 Vehicular Optical telescopes Optical design Imaging resolution Phase measurement 
光子学报
2019, 48(3): 0312003
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
针对1.2 m大口径望远镜主镜支撑系统, 为保证主镜面形精度均方根要求, 提出了一种有效的装调方法。该主镜支撑系统结合运动学原理, 分别设计了Whiffletree轴向支撑和柔性切向杆侧向支撑结构, 以保证其在较大温差范围内(-20~60 ℃)以及不同俯仰状态下(垂直-水平)始终具有较好的面形精度。机械加工误差及安装误差使柔性机构在组装过程中极易引入装配应力, 明显地增大主镜表面变形。借助于有限元软件对装调过程中可能出现的误差进行仿真分析, 根据结果制定装调流程, 并对实际装调进行指导。完成主镜支撑系统装调后, 采用补偿器和干涉仪对主镜的垂直检测及水平检测, 检测出两种状态下主镜的实际面形误差分别为λ/42和λ/31(λ=632.8 nm)。
主镜支撑 有限元分析 装调 面形精度检测 primary mirror support FEA assembly surface accuracy measurement 
红外与激光工程
2017, 46(9): 0918003
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
采用柔性带式支撑方式的大口径光学反射镜与支撑带之间的静摩擦力对反射镜面形精度影响较大, 而且该影响难于直接定量测量。针对这一实际情况, 考虑到温度变化将引起静摩擦力状态变化这一规律, 建立了温度—静摩擦力间的关系表达式; 接着, 以反射镜所受静摩擦力与环境温度关系为基础, 通过测量不同温度下的反射镜面形精度, 间接推算出静摩擦力对反射镜面形精度的影响; 以1.2米SiC轻量化反射镜为研究对象, 利用干涉仪检测其柔性带式支撑机构在不同温度下的面形精度, 并利用实测数据推导出温度—静摩擦关系的相应系数; 最后借助ANSYS软件, 对带式支撑机构的受力情况进行仿真分析。实测结果与仿真分析结果一致性较好, 说明该研究方法可较为准确地推导出静摩擦力对大口径SiC轻量化反射镜面形影响。
柔性带式支撑 静摩擦 面形精度 温度变化 有限元分析 大口径SiC轻量化反射镜 flexible stripe support static friction mirror distortion temperature change finite element analysis large-aperture SiC light-weight reflecting mirror 
光学 精密工程
2017, 25(9): 2387
Author Affiliations
Abstract
1 Key Laboratory for Space Object Measurements, Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China
2 Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093, China
3 Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, China
4 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
We demonstrate laser-ranging results for non-cooperative targets at ranges of 237 m and 19 km using superconducting nanowire single-photon detectors (SSPD). We upgrade the kilohertz rate laser-ranging system with a newly developed SSPD module, and the equivalent detection diameter is enlarged to 50 μm with a fiber and micro-lenses. Both retroreflectors and non-cooperative surfaces of aluminum foil, a solar panel, and a concrete panel at distances of 237 m and 19 km, whose echoes are of single-photon level, are ranged with sub-centimeter precision. Experimental signal-to-noise ratio curves with the product of quantum efficiency and system transmittance are obtained, which indicates that our system, with an average laser power of 0.8 W and a receiving aperture of 1.2 m, may be capable for space debris ranging at a distance of 800 km. This work suggests that SSPDs have the potential to be used for space debris surveillance.
280.3400 Laser range finder 120.0280 Remote sensing and sensors 040.5570 Quantum detectors 120.1880 Detection 
Chinese Optics Letters
2016, 14(7): 071201
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
针对1.2 m微晶主镜, 提出了基于6套柔性切向杆机构的侧向支撑与基于18点半柔性Whiffletree机构的轴向支撑相结合的新型主镜支撑方案,用于保证该主镜在较大温差范围以及不同俯仰角度下始终保持良好的面形精度及较高的系统刚度。 分析了该机构的工作原理,实验测试了主镜的面形精度及支撑系统的模态。机构分析表明该支撑方式可有效保证主镜定位精度和面形精度,并具有热解耦能力; 有限元分析确认系统具有良好的支撑性能; 面形精度检测得出主镜光轴垂直面形精度RMS达15.25 nm,光轴水平面形精度RMS为20.75 nm,模态测试则获得主镜支撑系统的一阶固有频率为60.3 Hz。实测结果验证了该新型主镜支撑系统具有良好的面形保持能力及支撑刚度,分析结果与实测结果符合度较好,主镜光轴垂直和水平状态面形精度RMS的相对误差分别为14.0%和17.8%,一阶固有频率相对误差为10.8%。得到的结果验证了有限元建模及分析的可信性,支撑系统设计方案的合理性及相关理论推导的正确性。
微晶主镜 主镜支撑 面形检测 模态测试 有限元分析 zerodur primary mirror primary mirror support surface figure test modal test Finite Element Analysis(FEA) 
光学 精密工程
2016, 24(10): 2462
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 长春师凯科技产业有限责任公司, 吉林 长春 130033
环形子孔径拼接技术检测大口径、高陡度光学非球面具有低成本、高效率的特点。提出一种基于最小二乘法和泽尼克多项式拟合的环形子孔径拼接方法检测高陡度光学非球面。研究了环形子孔径拼接算法的基本原理, 对环形子孔径的划分方式进行数学公式推导及参数运算, 建立被测非球面的有效数学模型。全口径的拼接结果与原始波面基本一致, 二者PV和RMS差值分别为0.015 1λ、0.004 7λ(λ为632.8 nm),残差的PV和RMS值为0.043 5λ、0.005 2λ, 验证该算法的有效性和准确性。
高陡度 高精度检测 环形子孔径拼接 拼接算法 high-gradient high-precision testing annular sub-aperture stitching stitching algorithm 
红外与激光工程
2016, 45(4): 0417001
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
本文分析研究大气色散对4 m望远镜成像系统分辨率的影响及校正方法。首先计算分析了大气色散对其成像分辨力的影响, 计算结果表明, 天顶角大于15°时, 大气色散开始影响系统成像分辨力, 天顶角大于45°时, 对系统成像分辨力有着较为严重的影响, 需要设置大气色散校正器来进行消除。本文列举了3种大气色散校正器的实现形式, 分别比较了它们的优缺点, 最后选择了胶合棱镜旋转补偿的形式来消除大气色散对4 m望远镜高分辨力成像系统的影响。基于4 m望远镜高分辨力成像系统的特点, 将大气色散校正器放置于成像元件前的平行光路中, 并利用光学设计软件对不同天顶角与大气色散校正器的旋转角度进行了仿真分析, 该大气色散校正器的最大楔角为965°, 旋转精度为±01°, 对系统分辨力影响为1/1 000。分析结果表明, 旋转精度完全能够满足系统成像分辨力的要求, 证明本文对大气色散的影响分析和大气色散校正器的设计是有效的。
大气色散校正器 望远镜 分辨力 光学设计 atmospheric dispersion corrector telescope resolution optical design 
中国光学
2015, 8(5): 814
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
针对热膨胀率较大的SiC反射镜, 设计了结合A-Frame柔性切向杆侧向支撑结构和机械式Whiffletree轴向支撑结构、具有良好热解耦能力的1.2 m SiC轻量化主镜被动支撑系统。为研究A-Frame柔性侧向支撑机构对主镜支撑面形、热解耦和系统刚度的影响, 利用Ansys软件对支撑系统的支撑效果进行了有限元分析, 而后对实际的支撑系统进行了相关试验测试。测试显示在光轴竖直和水平两种状态下, 使用提出的支撑机构的支撑系统引起的主镜镜面变形误差RMS的变化小于13 nm; 在实验室温度14~23℃下, 检测得到主镜面形RMS最大差异为1.9 nm。利用模态分析仪对该主镜及支撑系统进行的动态测试表明: 系统的一阶固有频率为52.7 Hz, 而理论分析为63 Hz, 且前6阶模态振型与分析一致。得到的分析和测试结果都表明该被动支撑系统支撑效果良好, 且具有较高的支撑刚度和良好的热解耦能力。
空间望远镜 SiC轻量化主镜 有限元分析 面形检测 热变形实验 模态测量 space telescopy SiC lightweight primary mirror Finite Element Analysis(FEA) mirror distortion measurement thermal distortion experiment modal measurement 
光学 精密工程
2015, 23(5): 1380

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!