作者单位
摘要
1 华东师范大学精密光谱科学与技术国家重点实验室,上海 200062
2 上海理工大学光电信息与计算机工程学院,上海 200093
3 华东师范大学重庆研究院,重庆 401121
描述一种基于高速光学异步采样(ASOPS)方法的太赫兹光谱数据采集系统,使用两台重频差为50 Hz的飞秒脉冲激光器分别作为泵浦光和探测光;使用LT-InGaAs/InAlAs光电导天线产生和接收太赫兹信号,使用采样率可调、采样模式可选的数据采集系统采集时域信号和获取光谱。试验得到的谱宽为0.06~4 THz,信噪比大于60 dB。在301.6 Msa/s的采样率和50 Hz扫描频率下,试验测量的水蒸气吸收光谱中吸收线的频率与HITRAN数据库中公布的非常接近,最大误差为12 GHz。
太赫兹时域光谱 光学异步采样 数据采集 现场可编程门阵列 terahertz time-domain spectroscopy optical asynchronous sampling data acquisition field programmable gate array 
应用激光
2023, 43(6): 0145
作者单位
摘要
渤海大学化学与材料工程学院,辽宁省全谱太阳能电池转光材料专业技术创新中心,锦州 121013
本文在水热条件下成功合成了一例Keggin型多酸基超分子化合物1,其分子式为H3[(3-PA)4(PW12O40)](3-PA=3-(3-吡啶)丙烯酸),并通过单晶X射线衍射、元素分析(EA)、红外(IR)光谱、X射线粉末衍射(PXRD)、热重(TG)和固体紫外-可见(UV-Vis)漫反射对化合物1的结构进行了表征。化合物1属于三斜晶系,P-1空间群,a=1.200 33(3) nm,b=1.216 42(3) nm,c=1.424 66(4) nm,α=75.030(1)°,β=73.452(1)°,γ=69.372(1)°,V=1.837 00(8) nm3,Z=1,Mr=3 476.78,F(000)=1 538,μ=18.815 mm-1,Dc=3.143 mg·m-3,S=1.062,R1=0.046 2,wR2=0.138 7。化合物1的结构单元包含一个[PW12O40]3-多阴离子和四个3-PA配体,并通过[PW12O40]3-多阴离子和3-PA配体之间的氢键连接形成二维超分子层。化合物1在光催化还原Cr(Ⅵ)反应中展现出良好的光催化活性,并具有较好的结构稳定性和可循环利用性。
多金属氧酸盐 水热合成 超分子化合物 光催化 Cr(VI)还原 polyoxometalate hydrothermal synthesis supramolecular complex photocatalysis Cr(VI) reduction 
人工晶体学报
2023, 52(8): 1485
李爽 1,2李华锋 1,2李凡 1,2,*
作者单位
摘要
1 昆明理工大学信息工程与自动化学院,云南 昆明 650500
2 云南省人工智能重点实验室,云南 昆明 650500
目前,有监督行人重识别方法着重关注单一模态(可见光)的行人检索问题。然而,在24 h的监控系统中,除可见光图像外,还存在大量的红外图像(这类图像缺少颜色和纹理信息)。因此,跨模态的行人检索方法可有效提升行人重识别技术的实用性。针对当前跨模态行人重识别方法存在忽视不同模态下独有判别性特征而导致的模型性能受限问题,提出了一种跨模态身份互预测学习和细粒度特征学习的跨模态行人重识别方法。该方法通过对模态专有身份分类器的设计,提升了模态内专有特征的判别性和鲁棒性,并通过构建交叉学习机制,促使网络将不同模态下的专有特征转化为模态不变特征,有效利用了模态特有判别性信息。此外,细粒度特征学习进一步从局部和全局两方面增强了网络特征表示的判别性。所提方法在公开数据集SYSU-MM01和RegDB上与同类方法相比,其结果优势明显,证明了所提方法的优越性。
行人重识别 跨模态 互预测 细粒度特征 
激光与光电子学进展
2022, 59(10): 1010010
Author Affiliations
Abstract
1 School of Science, Shandong Jianzhu University, Jinan 250101, China
2 Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
3 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
4 School of Physics, Shandong University, Jinan 250100, China
Lithium niobate (LiNbO3, LN) channel and ridge waveguides have been successfully fabricated by He ion implantation, which has energy of 500 keV and fluence of 1.5×1016 ions/cm2 and is combined with lithography and the precise diamond dicing technique. The refractive index profile of the annealed LN planar waveguide was reconstructed. The propagation loss of the channel waveguide with a width of 10 µm and that of the ridge waveguides with widths of 25 µm and 15 µm were investigated by the end-face coupling method. In our work, the factors that affect the waveguide properties of channel and ridge waveguides were revealed.
lithium niobate waveguides ion implantation ridge waveguide channel waveguide 
Chinese Optics Letters
2022, 20(7): 071301
作者单位
摘要
1 哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨 150000
2 装备发展部驻济南地区军事代表室,山东济南 250100
3 中国电波传播研究所,山东青岛 266107
城市通信技术的改革换代和用频设备的逐渐增多使得电磁环境变得越来越复杂。充分了解频谱资源利用的特性是提高频谱管理效率的关键。为了更全面地探索频谱利用的特点,提出一套完整的对复杂多样电磁环境大数据进行详细数据质量分析和处理的流程,分别对处于同一服务的不同信道、处于不同服务的不同信道进行频谱相关性分析,证明了频谱之间的相关性;对电磁环境大数据进行属性构造,构造了频率维占用度和时间维占用度属性。引入图像处理领域的多维混合高斯模型,对电磁信号进行背景噪声的去除,提取电磁信号,为后续的信息挖掘和关联分析奠定基础。
关联分析 属性构造 图像处理 多维混合高斯模型 电磁环境数据 association analysis attribute construction image processing multi-dimensional Gaussian mixture model electromagnetic environment data 
太赫兹科学与电子信息学报
2022, 20(1): 8
作者单位
摘要
1 长春理工大学光电工程学院,吉林 长春 130022
2 光驰科技(上海)有限公司,上海 200444
为了提高电子产品显示屏幕的耐用性,研制了可见光波段的硬质减反射薄膜。使用新材料SiAlON代替常用低折射率材料SiO2,依据Clausius-Mossotti方程式对其等效介电常数进行了理论计算,并进行了实验验证。经测试,基于SiAlON与Si3N4制备的硬质减反射薄膜的平均硬度达到1773.9 HV,可见光波段的平均反射率为0.489%。所提方法在保证薄膜减反射效果的同时提升了薄膜硬度,所研制的薄膜对电子产品的显示屏起到了更好的保护作用。研究结果对在低反射和高硬度方面具有较高要求的光学组件具有重要意义。
薄膜 光学薄膜 减反射膜 SiAlON 硬度 
中国激光
2022, 49(6): 0603002
作者单位
摘要
南京理工大学 材料科学与工程学院, 南京 210094
MnTe作为一种新型的无铅p型热电材料, 在中温区热电领域具有广阔的应用前景, 但其本身的热电性能不足以与高性能n型热电材料相匹配。本研究通过真空熔炼-淬火和放电等离子烧结的方法制备不同Ge掺杂量的致密且均匀的Mn1.06-xGexTe(x=0, 0.01, 0.02, 0.03, 0.04)多晶块体样品。过量的Mn可以有效抑制MnTe2相, 提高基体相的热电性能。通过掺杂4%Ge粉末, 材料的载流子浓度提高到7.328×1018 cm-3, 电导率在873 K增大到7×103S∙cm-1, 功率因子提升至620 μW∙m -1∙K-2。同时, 通过点缺陷增强声子散射使材料的热导率降低到0.62 W∙m-1∙K-1, 实现了对材料电声输运性能的有效调控。Mn1.02Ge0.04Te在873 K获得了0.86的热电优值ZT, 较纯MnTe材料提高了43%。
MnTe热电材料 Ge掺杂 载流子浓度 晶格热导率 MnTe thermoelectric material Ge doping carrier concentration lattice thermal conductivity 
无机材料学报
2021, 37(2): 209
作者单位
摘要
吉林大学物理学院, 吉林 长春 130012
受激拉曼散射 (SRS) 技术是获得相干辐射、探索分子结构的有力手段。利用 Nd: YAG 532 nm 激光作用于水分子, 并与 650 nm 连续 (CW) 激光联用, 极大增强了水分子的 O-H 伸缩振动受激拉曼散射。当有 1 mW CW 激光引入时, 在 3392 cm-1 处的 O-H 伸缩振动 SRS 峰的强度增加了一个数量级。同时, 获得了两个新的低频肩峰 (3 356 cm-1 和 3288 cm-1)。CW 激光不仅降低了 SRS 阈值, 而且提高了 SRS 强度。导致此现象的物理机制是由于 532 nm 泵浦激光和 650 nm CW 激光之间的频率差与水分子 O-H 伸缩振动频率相匹配, 分子振动与两束激光差频形成共振。此研究为共振增强其他弱拉曼模式提供了参考。
非线性光学 共振增强 受激拉曼散射 水分子 连续激光 nonlinear optics resonance enhancement stimulated Raman scattering water molecule CW laser 
量子电子学报
2021, 38(6): 774
付秀华 1李俊纬 1,*张功 1张静 1[ ... ]李爽 2
作者单位
摘要
1 长春理工大学光电工程学院, 吉林 长春 130022
2 光驰科技(上海)有限公司,上海 200444
高分子材料以其优异的性能,近年来得到了广泛的应用。以一种新型高分子材料环烯烃共聚物为基底,设计并研制了400~700 nm波段的减反射膜。根据薄膜热应力理论分析了材料特性,选择ZrO2作为黏结层,研究了等离子体处理时间对基底表面微观结构以及化学组成的影响。通过优化工艺参数和增加基底表面的活性,提高了基底与黏结层的结合力,再通过过渡层将黏结层与镀层结合,解决了薄膜与基底热膨胀系数不匹配的问题。采用镀后离子束轰击技术解决了恒温恒湿时的膜裂问题。测试结果表明,减反射膜在400~700 nm波段的平均反射率为0.117%,且具备良好的耐环境性能。
薄膜 光学薄膜 环烯烃共聚物 热应力 等离子体处理 离子束轰击 
中国激光
2021, 48(24): 2403003
作者单位
摘要
1 南京航空航天大学 航天学院,江苏 南京 211106
2 中国空间技术研究院遥感卫星总体部,北京 100094
3 北京空间机电研究所,北京 100094
为了解决空间光电跟瞄系统在真空环境下的多光轴标校问题,本文首先根据空间光电跟瞄系统的多光轴一致性检测精度要求,设计了一套多光轴标校系统。接着,对多光轴标校系统各子系统进行了详尽的误差分析,并给出了关键子系统的误差影响抑制方法。然后,对通信技术试验卫星三号的空间光电跟瞄系统进行了实验室环境与真空环境下的技术测试,分析了多光轴标校系统在两种测试环境下的误差来源以及测试精度,并给出了测试结果。最后,对多光轴标校系统进行了精度验证。最终结果表明:本文设计的多光轴标校系统在实验室测试环境下的标校精度为0.998″,收发平行度标定误差为1.165″;在真空测试环境下的标校精度为1.219″,收发平行度标定误差为1.359″,完全满足空间光电跟瞄系统1.5″的多光轴检测精度要求,为相关工程应用提供了技术支持。
空间光电跟瞄系统 真空环境 多光轴标校 误差分析 误差抑制 测试分析 space photoelectric tracking and aiming system vacuum environment multi-axis calibration error analysis restrain errors test analysis 
中国光学
2021, 14(3): 625

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!