作者单位
摘要
1 海南师范大学物理与电子工程学院海南省激光技术与光电子功能材料重点实验室,半导体激光海南省国际联合研究中心,海南 海口 571158
2 新加坡南洋理工大学电气与电子工程学院,新加坡 639798
3 新加坡南洋理工大学淡马锡实验室,新加坡 637553
4 中国科学院半导体研究所半导体超晶格国家重点实验室,北京 100083
5 长春理工大学高功率半导体激光器国家重点实验室,吉林 长春 130022
2 μm波长附近可调谐半导体激光器在分子光谱学和光通信领域中有广阔的应用前景。基于绝缘体上硅(SOI)平台,对2 μm波长附近可调谐半导体激光器的外腔部分进行了设计优化。分析了不同尺寸光波导的模式损耗特性、单个微环谐振腔受总线波导耦合间距的作用以及总线波导光反馈终端对外腔半导体激光器性能的影响。并提出了一种具有高工艺兼容度的多模环形光波导光反馈结构。所设计的可调谐半导体激光器硅基外腔可通过环形波导上的镍铬合金微加热器进行0.1 nm/K的高精度调谐,对单个微加热器施加3.2 V电压时,调谐范围可达66 nm(1967~2033 nm)。
硅光集成 可调谐外腔半导体激光器 环形谐振腔 光波导终端 
中国激光
2024, 51(6): 0601010
作者单位
摘要
1 中国科学院半导体研究所, 北京 100083
2 中国电子科技集团公司第四十一研究所, 山东青岛 266555
光电导天线作为太赫兹时域光谱仪产生与探测太赫兹辐射的关键部件, 具有重要的科研与工业价值。本文采用分子束外延 (MBE)方法制备 InGaAs/InAlAs超晶格作为 1 550 nm光电导天线的光吸收材料, 使用原子力显微镜、光致发光、高分辨 X射线衍射等方式验证了材料的高生长质量; 通过优化制备条件得到了侧面平整的台面结构光电导天线。制备的光电导太赫兹发射天线在太赫兹时域光谱系统中实现了 4.5 THz的频谱宽度, 动态范围为 45 dB。
太赫兹时域光谱仪 光电导天线 分子束外延 InGaAs/InAlAs超晶格 terahertz time-domain spectrometer photoconductive antenna Molecular Beam Epitaxy InGaAs/InAlAs superlattices 
太赫兹科学与电子信息学报
2023, 21(12): 1403
陈益航 1,2,3杨成奥 1,2,3王天放 1,2,3张宇 1,2,3[ ... ]牛智川 1,2,3
作者单位
摘要
1 中国科学院半导体研究所 超晶格国家重点实验室, 北京
2 中国科学院大学 材料科学与光电技术学院, 北京
3 中国电子科技集团公司第四十一研究所, 山东 青岛
锑化物半导体激光器是目前能够覆盖中红外波段的主要手段。锑化物半导体激光器经过多年的研究和发展, 已经逐渐的走向成熟。由于在这个波段具有很多气体分子的吸收峰以及具有较高透过率的大气窗口, 使得中红外锑化物半导体激光器在气体检测、材料加工以及自由空间光通信等领域具有重要的作用。
锑化物 中红外激光 气体检测 自由空间光通信 GaSb-based mid-infrared waveband gas detection free space optical communication 
光电技术应用
2022, 28(6): 33
李森森 1,2张宇 3,4,5徐应强 3,4,5牛智川 3,4,5闫秀生 1,2
作者单位
摘要
1 光电信息控制和安全技术重点实验室,天津 300308
2 中国电子科技集团公司光电研究院,天津 300308
3 中国科学院半导体研究所 半导体超晶格国家重点实验室,北京 100083
4 中国科学院大学 材料科学与光电技术学院,北京 100049
5 晋城市国科半导体研究所,山西 晋城 048000
红外与激光工程
2022, 51(8): 20220493
李森森 1,2,*张宇 3,4,5徐广立 6徐应强 3,4,5[ ... ]闫秀生 1,2
作者单位
摘要
1 光电信息控制和安全技术重点实验室,天津 300308
2 中国电子科技集团公司光电研究院,天津 300308
3 中国科学院半导体研究所半导体超晶格国家重点实验室,北京 100083
4 中国科学院大学材料科学与光电技术学院,北京 100049
5 晋城市国科半导体研究所,山西 晋城 048006
6 韦斯泰科技(深圳)有限公司,广东 深圳 518000
中国激光
2022, 49(18): 1816002
作者单位
摘要
中国科学院大学半导体研究所,北京 100083
中红外探测技术作为一种重要的被动探测手段,在各个领域都有着非常重要的作用。其中,以InAs/InAsSb超晶格材料为基础的无Ga型Sb化物II类超晶格探测器,由于去除了Ga原子的缺陷,具有更高的少子寿命,有利于提高探测器性能。此外,使用光子晶体结构,进行表面光学性能调控,可以提高器件的响应度,从而降低材料吸收区厚度,降低器件暗电流。暗电流的降低和响应度的提升,进一步优化了探测器的性能,进而提高器件工作温度,进一步降低探测系统的体积、重量和功耗。研究表明:使用光子晶体结构可以在不改变外延材料结构的前提下,提高器件量子效率,实现响应光谱的展宽,在实际应用中具有重要的意义。文中综述和讨论了InAs/InAsSb超晶格探测器和光子晶体结构探测器材料生长、结构设计的主要技术问题,详细介绍了两种提高中红外探测器性能的方案及国内外的研究进展。
锑化物 中红外探测技术 高工作温度 InAs/InAsSb二类超晶格 光子晶体 Sb-based material mid-wave infrared photodetector technology high operating temperature InAs/InAsSb type-II superlattice photonic crystals 
红外与激光工程
2022, 51(3): 20220106
作者单位
摘要
1 云南师范大学 能源与环境科学学院,云南 昆明 650092
2 中国科学院半导体研究所 半导体超晶格国家重点实验室,北京 100083
3 中国科学技术大学 量子信息与量子科技前沿协同创新中心,安徽 合肥 230026
4 华南师范大学 华南先进光电子研究院,广东省光信息材料与技术重点实验室,电子纸显示技术研究所,国家绿色光电子国际联合研究中心,广东 广州 510006
利用分子束外延技术在GaSb衬底上生长了高质量的InAs/InAsSb(无Ga)Ⅱ类超晶格。超晶格的结构由100个周期组成,每个周期分别是3.8 nm厚的InAs层和1.4 nm厚的InAs0.66Sb0.34层。在实验过程中出现了一种特殊的尖峰状缺陷。利用高分辨率x射线衍射(HRXRD)、原子力显微镜(AFM)和傅里叶变换红外光谱(FTIR)对外延的超晶格进行了表征和分析。结果表明,优化后的样品几乎为零晶格失配,超晶格0级峰半峰宽为39.3 arcsec,表面均方根粗糙度在10 μm×10 μm范围内达到1.72 ?。红外吸收光谱显示50%的截止波长为4.28 μm,PL谱显示InAs/InAs0.66Sb0.34超晶格4.58 μm处有清晰锐利的发光峰。这些结果表明,外延生长的InAs/InAsSb超晶格稳定性和重复性良好,值得进一步的研究。
InAs/InAsSb 超晶格 分子束外延 Ⅲ-Ⅴ族半导体材料 InAs/InAsSb superlattice MBE Ⅲ-Ⅴ semiconductor materials 
红外与毫米波学报
2021, 40(5): 595
作者单位
摘要
1 云南师范大学 云南省光电信息技术重点实验室,云南 昆明 650500
2 中国科学院半导体研究所 超晶格与微结构国家重点实验室,北京 100083
3 中国科学院大学 材料科学与光电子工程中心,北京 100049
采用GaSb体材料和InAs/GaSb超晶格分别作为短波与中波吸收材料,外延生长制备了NIPPIN型短中双色红外探测器。HRXRD及AFM测试表明,InAs/GaSb超晶格零级峰和GaSb峰半峰宽FWHM分别为17.57 arcsec和19.15 arcsec,10 μm×10 μm范围表面均方根粗糙度为1.82?。77 K下,SiO2钝化器件最大阻抗与面积乘积值RA5.58×105 Ω?cm2,暗电流密度为5.27×10-7 A?cm-2,侧壁电阻率为6.83×106 Ω?cm。经阳极硫化后,器件最大RA值为1.86×106 Ω?cm2,暗电流密度为4.12×10-7A?cm-2,侧壁电阻率为4.49×107Ω?cm。相同偏压下,硫化工艺使器件暗电流降低1-2个数量级,侧壁电阻率提高了1个数量级。对硫化器件进行了光谱响应测试,器件具有依赖偏压极性的低串扰双色探测性能,其短波通道与中波通道的50%截止波长分别为1.55 μm和4.62 μm,在1.44 μm、2.7 μm和4 μm处,响应度分别为0.415 A/W、0.435 A/W和0.337 A/W。
InAs/GaSb超晶格 GaSb体材料 中短双色 红外探测 侧壁电阻率 低串扰 InAs/GaSb superlattice GaSb bulk material mid-/short-wave dual-band infrared detector side wall resistivity low optical cross-talk 
红外与毫米波学报
2021, 40(5): 569
作者单位
摘要
1 中国科学院半导体研究所 超晶格国家重点实验室,北京 100083
2 中国科学院大学 材料学院与光电技术学院,北京 101408
用分子束外延系统(MBE)生长高质量GaSb基AlInAsSb四元数字合金制作雪崩光电二极管(APD)。为了克服随机体材料生长方式发生的偏析现象,采用迁移增强的数字合金生长方式,其快门顺序为AlSb,AlAs,AlSb,Sb,In,InAs,In,Sb。其高分辨率X射线衍射(HRXRD)曲线显示出尖锐的卫星峰,并显示出几乎完美的晶格匹配,其原子力显微镜(AFM)图像上也可以观察到光滑的表面形貌。使用优化的数字合金生长方式,制备了分离吸收、渐变、电荷和倍增(SAGCM)型的AlInAsSb数字合金APD。在室温下,器件在95%击穿时,暗电流密度为0.95 mA/cm2,击穿前最大稳定增益高达~100,其器件的高性能显示出光电领域进一步发展的潜力。
雪崩光电二级管 分子束外延 AlInAsSb 四元数字合金 avalanche photodiodes(APD) molecular beam epitaxy(MBE) AlInAsSb quaternary digital alloys 
红外与毫米波学报
2021, 40(2): 172
作者单位
摘要
1 中国科学院半导体研究所 超晶格国家重点实验室,北京 100083
2 中国科学院大学 材料学院与光电技术学院,北京 101408
利用分子束外延的方法在GaSb衬底上生长GaSb热光伏电池单元,制作了两种不同的1 cm×1 cm面积尺寸的热光伏电池单元,它们有着不同的电极形状。通过不断优化分子束外延的生长条件,以期得到高质量的GaSb外延层。AFM图中显示的表面形貌表明器件有着高质量的外延层,其表面形貌的RMS只有1.5 Å (1 Å=0.1 nm)。测量和比较了两种热光伏电池的器件特性,包括开路电压、短路电流密度、光电转换效率、填充因子以及暗电流密度。在一个模拟太阳光照射下,热光伏电池单元有着0.303 V的开路电压和27.1 mA/cm2的短路电流密度。和只有简单电极形状的热光伏电池单元进行对比,有栅形电极形状的热光伏电池单元在短路电流密度和填充因子上具有更优异的表现。在红外光的照射下,有栅形电极形状的热光伏电池达到了一个最优的填充因子56.8%。
GaSb thermophotovoltaic (TPV) cell open-circuit voltage short-circuit current density fill factor 锑化镓 热光伏电池 开路电压 短路电流密度 填充因子 
红外与激光工程
2021, 50(3): 20200224

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!