作者单位
摘要
北京工业大学北京市激光应用技术工程技术研究中心, 激光工程研究院, 北京 100124
飞秒激光在工业加工、激光传感、****、科学研究等领域有着重要的应用前景。报道了一个工作在1 μm波段的飞秒光纤啁啾脉冲放大(FCPA)系统。该系统主要包括一个1.5 μm全光纤被动锁模光源、一个1 μm波段非线性频率转换装置、两级掺镱光纤放大器及一个基于透射式衍射光栅对的脉冲压缩器。掺铒锁模光源中心波长为1.55 μm、3 dB光谱带宽为12.9 nm、重复频率为17.5 MHz, 经功率放大后注入一段9.5 cm高非线性光纤中产生1 μm波段色散波, 其中心波长为1070 nm, 3 dB光谱带宽为33 nm。将此色散波脉冲作为种子源通过声光调制器选频后得到重复频率为1.09 MHz的脉冲输出。随后功率放大至11.4 W, 压缩后得到平均功率为7.7 W、10 dB光谱宽度为21.4 nm、脉冲宽度为270 fs、峰值功率为26 MW的飞秒脉冲激光输出。
激光器 光纤激光器 超快激光 被动锁模光源 啁啾脉冲放大 
中国激光
2018, 45(1): 0101001
作者单位
摘要
北京工业大学激光工程研究院, 北京 100124
掺铥光纤激光器可广泛应用于激光医疗、人眼安全雷达、非金属材料加工、光电对抗等众多领域,具有其他波段光纤激光器不可替代的重要作用。主要介绍了本课题组在高功率超短脉冲掺铥光纤激光器方面的研究进展,包括利用光纤布拉格光栅控制锁模掺铥光纤振荡器的脉冲宽度和光谱形状,实现了2 μm波段高重复频率、高稳定性的皮秒脉冲激光输出。同时,采用该皮秒脉冲激光作为种子源,研制出了百瓦量级全光纤结构的皮秒掺铥光纤放大器,最后一级功率放大器的最大平均输出功率为120.4 W,脉冲宽度为16 ps。此外,设计并搭建了全光纤全保偏结构的皮秒掺铥光纤放大系统,实现了平均功率为240 W的线偏振皮秒脉冲激光输出,偏振消光比大于15 dB,脉冲宽度为45 ps。
激光器 光纤激光器 光纤放大器 中红外激光器 
中国激光
2017, 44(2): 0201003
Author Affiliations
Abstract
National Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
We report a simple and compact all-fiber laser system that is capable of generating widely tunable femtosecond pulses from 1.6 to 2.32 μm. The pulses are produced by utilizing the soliton self-frequency shift in a highly nonlinear fiber pumped by an Er-doped mode-locked fiber laser. Two stages of single-clad Tm:fiber amplifiers are used to amplify the pulses to a higher pulse energy of 10.9 nJ with pulse width of 94 fs, and corresponding to peak power of 105 kW at around 1.93 μm. Running a few hours, the all-fiber laser system exhibits exceptional stability with a signal-to-noise ratio as high as 70 dB.
140.3280 Laser amplifiers 140.3510 Lasers, fiber 140.3600 Lasers, tunable 140.7090 Ultrafast lasers 
Chinese Optics Letters
2016, 14(9): 091405
作者单位
摘要
北京工业大学激光工程研究院国家产学研激光技术中心, 北京 100124
设计了一种基于半导体激光器调制技术的978 nm纳秒脉冲掺镱全光纤激光器。该激光器采用主振荡功率放大结构,由调制半导体激光种子源和一级单模单包层掺镱光纤放大器组成。半导体激光种子源的光谱中心波长通过种子光自注入方式被定义为978.3 nm,调制之后的激光脉冲宽度为4.5 ns,重复频率在10~50 MHz范围内可调。当半导体激光种子源调制重复频率为50 MHz时,种子光被一级单包层掺镱光纤放大器放大至115 mW,相应的激光中心波长为978.3 nm,3 dB光谱带宽为0.11 nm,放大之后光谱中没有出现明显的放大自发辐射现象。
激光器 光纤放大器 半导体激光器调制 掺镱光纤 
中国激光
2016, 43(8): 0801005
作者单位
摘要
北京工业大学激光工程研究院, 国家产学研激光技术中心, 北京 100124
报道了基于半导体纳秒调制技术的百瓦级、线性偏振掺铥光纤激光器。该激光器采用调制半导体激光器作为种子源,脉冲宽度为20 ns,重复频率在200 kHz~1 MHz范围内连续可调。当重复频率为200 kHz时,经主功率振荡放大器(MOPA)得到100 W 平均功率输出。最高输出功率时,由于存在增益整形机制,脉冲宽度由20 ns 降低为6 ns。相应的峰值功率达到83 kW,单脉冲能量为0.5 mJ,最高输出功率下系统输出偏振消光比达到17 dB。据本文所知,这是首次报道基于半导体调制技术的百瓦级、纳秒脉宽、线偏振的掺铥光纤激光器。
激光器 光纤激光器 半导体激光器调制 纳秒脉冲 线偏振 
中国激光
2015, 42(8): 0802005
作者单位
摘要
北京工业大学激光工程研究院, 北京 100124
报道了一个基于类噪声脉冲抽运的高功率全光纤结构的中红外超连续谱光源。利用非线性环镜锁模技术,在1966 nm 处实现类噪声脉冲激光输出,3 dB 光谱宽度为11 nm,脉冲包络宽度为1.4 ns,重复频率为3.36 MHz。将该纳秒类噪声脉冲作为两级单模掺铥光纤放大器的种子源进行功率放大。在此过程中,类噪声脉冲的最大输出功率可达28.5 W,相应的光谱范围为1.9~2.4 μm。最后将放大的类噪声脉冲耦合到一段10 m 长的氟锆酸盐ZBLAN 光纤中,实现光谱的进一步展宽。此时,ZBLAN 光纤的最大输出功率为14.3 W, 相应的光谱范围为1.9~3.62 μm。
激光器 光纤激光器 光纤放大器 中红外激光 超连续谱光源 
中国激光
2015, 42(9): 0902003
作者单位
摘要
北京工业大学激光工程研究院 国家产学研激光技术中心, 北京 100124
报道了一个高功率全光纤结构的中红外超连续谱激光源,该光源由1.55 μm纳秒脉冲掺铒光纤激光器、包层抽运掺铥光纤放大器以及单模ZBLAN光纤组成。首先利用单模光纤将1.55 μm纳秒脉冲激光频移至2.0 μm波段,然后利用掺铥光纤放大器对其进行功率放大,最后利用ZBLAN光纤使掺铥光纤放大器输出的光谱进一步向中红外长波长方向扩展。当掺铥光纤放大器输出功率为3.95 W时,ZBLAN光纤产生了2.2 W的中红外超连续谱激光输出,相应的光谱范围为1.9~3.75 μm,10 dB光谱带宽大于1600 nm。此外,通过增加掺铥光纤放大器的平均输出功率,中红外超连续谱的输出功率得到了进一步提高,当耦合进单模ZBLAN光纤的平均功率为21 W时,中红外超连续谱的平均输出功率达到了16.2 W,相应的光谱范围为1.9~3.5 μm。
光纤激光器 光纤放大器 中红外激光 超连续谱激光源 
中国激光
2014, 41(9): 0902004
作者单位
摘要
北京工业大学激光工程研究院, 国家产学研激光技术中心, 北京 100124
报道了一个全光纤主振荡功率放大(MOPA)结构的窄线宽掺铥连续光纤激光器,该高功率光纤激光器由窄线宽连续光纤激光种子源和两级包层抽运掺铥光纤放大器组成。激光种子源经过两级双包层掺铥光纤放大器后,最大平均输出功率为120 W,功率放大器的斜率效率高达60%,输出激光的中心波长为1986 nm,3 dB光谱带宽为0.48 nm,平均输出功率未能进一步提高仅受限于最大抽运功率。此外,利用该两级掺铥光纤放大器,得到了平均输出功率为122 W的宽带超荧光光源,放大后的超荧光源的中心波长为1990 nm,3 dB光谱带宽为25 nm。
激光器 光纤激光器 光纤放大器 掺铥光纤 全光纤结构 
中国激光
2014, 41(4): 0402005
作者单位
摘要
北京工业大学激光工程研究院, 北京 100124
介绍了重频为400 KHz,脉冲宽度为960 ps输出的高脉冲能量的亚纳秒掺镱光纤激光器。该激光器采用全光纤主振荡功率放大(MOPA)结构,种子源使用的是实验室自制的频率为400 kHz,脉宽为940 ps,输出功率为100 mW的掺镱光纤激光器,通过6个10 W多模激光抽运将种子光放大到8.9 W平均功率输出,相应的单脉冲能量达到22 μJ,峰值功率达到23 kW,输出激光中心波长为1064.5 nm。该亚纳秒、高能量脉冲激光器可广泛用于材料加工,激光测距,激光雷达等领域。
激光器 光纤激光器 光纤放大器 高脉冲能量 亚纳秒脉冲 
中国激光
2013, 40(12): 1202003
作者单位
摘要
北京工业大学激光工程研究院, 国家产学研激光技术中心, 北京 100124
中国激光
2013, 40(8): 0803001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!