作者单位
摘要
1 西北农林科技大学机械与电子工程学院,陕西 杨凌 712100
2 农业农村部农业物联网重点实验室,陕西 杨凌 712100.
3 陕西省农业信息感知与智能服务重点实验室,陕西 杨凌 712100
重金属污染会影响农作物的正常生长, 如何快速准确的实现对农作物中重金属的检测已成为亟待解决的问题之一。 传统植物中重金属检测依赖于化学方法, 虽然可以实现重金属含量的精准检测, 然而其操作过程繁琐, 并且无法实现批量样本的检测, 更无法实现重金属胁迫下植物组织的原位微观检测。 拉曼光谱具备无损探测固体、 液体和气体状态的分子振动信息、 光谱分辨率高和对水分不敏感等优势, 因此利用拉曼光谱技术检测农作物中重金属含量具有可行性。 苹果砧木是苹果树幼苗嫁接的基础, 能够保障后期的苹果树体健康以及苹果果品品质与产量, 而苹果砧木根系受到重金属污染, 阻碍其健康生长并影响苹果树幼苗的抗逆性, 因此探明重金属与苹果砧木根系互作机理十分必要。 该研究以5组不同浓度CuSO4·5H2O溶液胁迫下的苹果砧木为研究对象, 首先采集不同铜离子(Cu2+)胁迫梯度下苹果砧木根系的拉曼散射光谱, 利用自适应迭代重加权惩罚最小二乘法(Air-PLS)和S-G平滑方法对所获得的拉曼光谱数据进行预处理, 去除荧光影响以及进行基线校正; 其次建立偏最小二乘判别分析(PLS-DA)模型和支持向量机(SVM)判别模型, 结果表明: 基于显微拉曼光谱和SVM, PLS-DA判别模型对苹果砧木根系的铜离子胁迫进行判别, SVM模型准确率可达100%, PLS-DA模型准确率为96%, 能够较好的预测出苹果砧木受重金属铜的胁迫程度; 最后基于特征拉曼光谱峰1 096, 1 329, 1 605和2 937 cm-1进行苹果砧木根系横截面的化学成像可视化研究。 研究结果表明, 拉曼光谱技术结合Air-PLS和S-G平滑建立的SVM模型和PLS-DA模型可以快速、 有效地进行苹果砧木根系受重金属胁迫程度的诊断, 为重金属胁迫农作物检测提供新的思路, 对农作物的重金属逆境胁迫互作机理诊断具有理论指导意义。
拉曼光谱技术 苹果砧木 根系 重金属胁迫 Raman spectroscopy Apple stock Roots Heavy metal stress 
光谱学与光谱分析
2022, 42(9): 2890
张仲雄 1,2,3,*张东莉 4田世杰 1,2,3方世言 1,2,3[ ... ]胡瑾 1,2,3
作者单位
摘要
1 西北农林科技大学机械与电子工程学院, 陕西 杨凌 712100
2 农业农村部农业物联网重点实验室, 陕西 杨凌 712100
3 陕西省农业信息感知与智能服务重点实验室, 陕西 杨凌 712100
4 西北农林科技大学生命科学学院, 陕西 杨凌 712100
近年来食品掺假事件频繁发生, 对食品安全领域产生巨大挑战, 食品掺假问题已成为人们关注的焦点和讨论的热点, 因此实现食品掺假的快速、 准确以及无损检测对保障食品质量和安全具有重要意义。 随着新食品原料、 新添加剂以及新型食品加工技术不断涌现, 使得食品掺假问题呈现技术化、 隐形化、 多样化等特征, 食品中掺假对象的鉴别技术面临更严峻的挑战。 目前一些现代检测技术可针对食品掺假问题进行有效检测, 如高效液相色谱法、 稳定碳同位素比值法等, 然而由于需对样品进行复杂预处理、 检测仪器操作技术要求较高等原因, 使其针对现有的食品掺假检测存在一定的局限性, 因此寻求一种新型的、 灵敏度高的以及具有指纹特性的无损检测技术进行现有食品掺假检测成为关键。 太赫兹(Terahertz, THz)波谱是指频率在0.1~10 THz之间的电磁波, 具有微波和红外双重特性, 其中包括指纹特性、 相干性、 安全性等。 由于物质中大部分有机大分子之间弱相互作用、 骨架振动、 偶极子的旋转和振动跃迁频率与太赫兹波谱相对应, 使得太赫兹技术在食品掺假检测应用领域蕴含着巨大的潜力。 首先阐述了太赫兹波谱技术用于物质检测的原理; 重点综述了太赫兹波谱技术在食品掺假检测方面的最新研究进展, 具体以转基因食品鉴别、 食品原产地鉴别、 乳制品掺假检测、 蜂蜜掺假检测及其他食品掺假检测进行综述; 其次分析了目前太赫兹波谱技术在食品掺假检测方面所存在的问题, 如水分吸收、 散射效应等影响; 最后展望了太赫兹波谱技术在食品掺假检测方面的应用前景, 如开发低成本的太赫兹源和探测器以促进太赫兹技术普及应用、 将机器学习算法用于太赫兹波谱建模分析以提高模型精度和分析速度、 与其他现代检测技术结合使用以实现检测技术间优势互补等; 以期为开展太赫兹波谱技术在食品掺假检测方面研究提供参考和指导。
太赫兹时域光谱 光谱检测 食品掺假 食品安全 化学计量学 Terahertz time-domain spectroscopy Spectral detection Food safety Food adulteration Chemometrics 
光谱学与光谱分析
2021, 41(5): 1379
作者单位
摘要
西北农林科技大学机械与电子工程学院, 陕西 杨凌 712100
植物非生物胁迫是指对植物产生不利影响的非生物因素, 非生物胁迫威胁植物发芽、 生长、 发育和繁殖, 是阻碍农作物高效栽培和农业可持续发展的主要因素。 植物胁迫精准管理和抗逆植物育种是缓解和解决非生物胁迫的有效途径, 其中植物表型分析是一个不可或缺的环节, 但是传统滞后的如人工、 破坏式表型测量方法很难满足高通量表型分析的需求, 制约着植物非生物逆境治理的精度和现代植物育种的效率。 高通量植物表型分析技术旨在实现植物复杂性状的快速、 自动、 无损地获取与分析, 能实时原位监测植物受胁迫状态与程度, 指导胁迫治理措施和资源精准投入, 可以为优良抗逆植物品种高通量筛选鉴定提供解决方案、 能为植物抗逆基因解析与定位、 植物遗传变异分析等提供大数据支撑。 由于成像光谱技术能够实时、 非接触、 高效地测量植物结构形态、 生理生化等多样化的表型, 在高通量植物表型分析中表现出良好的潜力, 近年来在植物精准种植和现代植物育种中得到广泛研究与应用。 主要阐述可见光成像(RGB Imaging)、 多光谱成像(MSI)、 高光谱成像(HSI)、 叶绿素荧光成像(ChlFI)、 多光谱荧光成像(MFI)、 热红外成像(TIRI)高通量表型分析技术在植物非生物胁迫表型分析中的研究进展以及评估分析其发展趋势; 首先简单介绍了不同成像光谱的技术特点以及在植物表型分析中的应用差异和高通量分析流程; 其次总结了近年来基于成像光谱技术高通量分析植物非生物胁迫表型的部分研究和应用, 介绍范围从植物胁迫监测、 抗逆植物品种筛选鉴定、 植物遗传分析3个方面出发, 主要涉及植物干旱、 温度、 盐害、 养分胁迫以及其他非生物逆境。 最后探讨了上述成像光谱技术在植物非生物胁迫表型高通量分析的机遇和其面临的挑战。
成像光谱 非生物胁迫 高通量表型分析 精准管理 植物育种 Imaging spectroscopy Abiotic stress High-throughput plant phenotyping Precision farming Plant breeding 
光谱学与光谱分析
2020, 40(11): 3365
余克强 1,2,3,*孟浩 1曹晓峰 1赵艳茹 1,2,3
作者单位
摘要
1 西北农林科技大学机械与电子工程学院, 陕西 杨凌 712100
2 农业农村部农业物联网重点实验室, 陕西 杨凌 712100
3 陕西省农业信息感知与智能服务重点实验室, 陕西 杨凌 712100
猕猴桃是我国发展势头和经济效益比较突出的水果之一, 其果肉色泽是评价猕猴桃果实品质的重要指标。 利用近红外光谱技术对贮藏期猕猴桃不同深度果肉色泽的变化进行研究。 以贮藏期“哑特”猕猴桃果皮下0, 5和10 mm处果肉色泽(L*, a*和b*)为研究对象, 用近红外光谱(830~2 500 nm)结合化学计量学方法对猕猴桃果肉色泽特征进行预测分析。 通过建立基于全波段的偏最小二乘回归(PLSR)模型, 发现猕猴挑果皮下5 mm处色泽特征(L*5, a*5, b*5)所建立的校正预测模型效果好, 说明该处的色泽数据和近红外光谱信息的相关度较高。 运用竞争性自适应重加权采样法(CARS)和无信息变量消除法(UVE)两种算法从高维近红外光谱全波段信息中选取与颜色特征相关的特征波长信息, 并与猕猴桃果皮下5 mm处的色泽(L*5, a*5, b*5)分别建立PLSR和多元线性回归(MLR)预测模型。 其中对果肉色泽L*5所建立的模型中, CARS-PLSR模型的校正和预测效果均为最好, RC达到0.942 7, RMSEC为1.699 7, RP达到0.885 0, RMSEP为1.642 4; 对猕猴桃果肉色泽a*5所建立的模型中, UVE-MLR模型的校正和预测效果最好, RC达到0.946 3, RMSEC为0.342 4, RP达到0.854 9, RMSEP为0.629 6; 对猕猴桃果肉色泽b*5所建立的模型中, CARS-MLR模型的效果最好, RC达到0.944 3, RMSEC为1.010 1, RP达到0.839 8, RMSEP为1.354 3。 研究表明近红外光谱分析技术检测猕猴桃果皮下5 mm处色泽(L*5, a*5和b*5)具有良好的准确度, 为猕猴桃品质评价提供技术支撑。
猕猴桃 近红外光谱 贮藏期 不同深度 果肉色泽 Kiwifruit Near-infrared spectroscopy Storage periods Different depths Pulp color features 
光谱学与光谱分析
2020, 40(7): 2240
作者单位
摘要
1 西北农林科技大学机械与电子工程学院, 陕西 杨凌 712100
2 农业农村部农业物联网重点实验室, 陕西 杨凌 712100
3 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
测试参数的选择和优化是进行激光诱导击穿光谱(LIBS) 试验的重要步骤之一, 合适的测试参数能够保障所得光谱数据的准确性。 本研究运用LIBS技术, 以土壤中主要元素(硅、 铁、 镁、 钙、 铝、 钠、 钾等) 为载体, 研究LIBS不同测试参数对元素谱线特性影响, 优化得到普适的土壤测试条件。 设计了以LIBS系统中激光脉冲能量(LE) 、 延迟时间(DT) 和聚焦透镜到样品的距离(LTSD) 三因素的二次中心组合的试验, 以土壤中主要元素的特征谱线组合信背比(SBR) YSBR为目标函数, 分析了三因素之间交互作用对YSBR的影响。 结果表明: 因素DT对YSBR的线性效果显著, 而LE和LTSD对YSBR的线性效果均不显著; 三者的交互影响对YSBR的交互效果都不显著; 对于二次项LE2, DT2和LTSD2对YSBR的曲面效应均显著。 优化得到最佳的试验条件是: 激光能量LE为103.09 mJ, 延迟时间为2.92 μs, 透镜到样品的距离LTSD为97.69 mm, 得到最大组合信背比YSBR为198.602。 这些测试参数是后期LIBS数据准确分析的前提, 为田间实地土壤LIBS检测参数的选择提供重要的借鉴。
激光诱导击穿光谱 测试参数 响应面 信背比 Laser-induced breakdown spectroscopy Test parameters Response surface methodology Signal-background-ratio 
光谱学与光谱分析
2019, 39(2): 577
作者单位
摘要
1 浙江大学宁波理工学院, 浙江 宁波 315100
2 金华职业技术学院, 浙江 金华 321017
3 浙江经济职业技术学院, 浙江 杭州 310018
4 浙江省农业机械研究院, 浙江 金华 321017
5 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
油菜蚜虫可造成油菜籽的严重减产, 及早进行油菜蚜虫判别以及其侵染定位识别有助于精准喷药。 采用可见-近红外高光谱成像技术结合图像分析对185个蚜虫侵染以及138个健康油菜角果进行判别, 并进行蚜虫的定位分析。 首先采用主成分分析法(PCA)对两类样本的平均光谱进行聚类分析, 并基于X-loading得出737 nm波段可作为判断蚜虫的重要波段, 采用Boxplot进行两类样本间单波段处的统计分析, 同时得出基于737 nm波段判断蚜虫侵染油菜角果的线性公式为y=2.917 6-3.345 7x(x为样本在737 nm处的光谱值, y为样本的分类预测值)。 采用此公式对实验样本进行判别分析, 可以发现角果蚜虫识别率为99.0%。 同时基于737 nm处的油菜角果单波段灰度图进行蚜虫的定位识别, 可以得到蚜虫的识别率为81.1%。 结果表明, 采用737 nm处的单波段光谱信息以及图像信息可进行油菜角果蚜虫侵染的定位识别, 为进一步开发便携仪检测仪以及精准喷药提供理论和方法依据。
高光谱 油菜角果 蚜虫 定位识别 Hyperspectral imaging Rape pod Aphis Location identification 
光谱学与光谱分析
2017, 37(10): 3193
作者单位
摘要
1 浙江省中医药研究院, 浙江省中药新药研发重点实验室, 浙江 杭州 310007
2 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
浙贝母(Fritillariae thunbergii Bulbus)是一种常用的化痰止咳中药, 为浙江著名的“浙八味”之一。 硫熏能够使浙贝母增白、 防虫蛀以及延长保质期, 然而过度的硫熏不仅会影响浙贝母的品质, 还会危害人体健康。 因此, 进行硫熏浙贝母的无损鉴别分析有利于浙贝母的品质监测, 保障中药质量。 采用近红外光谱结合化学计量学方法进行六种不同硫熏程度浙贝母的鉴别分析, 在近红外(900~1 700 nm)光谱条件下, 采用“boxplot”统计分析1 000~1 100 nm内样本间的光谱反射值的差异。 同时采用主成分分析(PCA)进行六种样本的聚类分析。 应用连续投影法(SPA)进行数据挖掘获得10条特征波段, 建立其偏最小二乘判别分析(PLS-DA)模型。 结果表明, 建立的PLS-DA模型可达到与全谱类似的判别结果。 近红外光谱技术结合化学计量学方法能够实现不同硫熏程度浙贝母的无损鉴别分析, 这为后续进行硫熏浙贝母品质分析以及研发相应贝母便携检测仪提供参考。
近红外光谱 浙贝母 硫熏 化学计量学方法 Near infrared spectroscopy Fritillariae thunbergii Bulbus Sulphur fumigation Chemometrics method 
光谱学与光谱分析
2017, 37(10): 3070
作者单位
摘要
浙江大学生物系统工程与食品科学学院, 农业部设施农业装备与信息化重点实验室, 浙江 杭州 310058
土壤元素的丰缺是对土壤养分检测、 农业按需种植和科学施肥的依据, 是精准农业农情信息感知技术检测的关键点, 更为农业生态、 高效和优质生产提供理论指导。 该研究运用激光诱导击穿光谱(LIBS)技术结合定标曲线法和偏最小二乘回归(PLSR)方法对土壤中的Al, Fe, Mg, Ca, Na和K多种元素同时进行定量分析。 利用LIBS检测仪获取了五种标准土壤样品(国家编号: GBW07446, GBW07447, GBW07454, GBW07455和GBW07456)的LIBS数据之后, 将每种土壤的多条谱线平均处理来消除试验误差。 通过分析所获取的土壤LIBS谱线信息, 选取了Al, Fe, Mg, Ca, Na和K元素的特征分析谱线和分析光谱区间, 并利用谱线的峰值信息和分析光谱区间内的单个或多个谱峰的积分信息(峰面积)与对应元素浓度拟合并建立定标曲线。 结果表明, 基于谱峰的峰面积建立的定标曲线的线性关系优于利用峰值信息建立的定标曲线(Fe除外)。 同时, 针对所选的分析光谱区间和元素的浓度信息, 运用PLSR建立定量分析模型, 其结果明显要优于定标曲线的分析精度, 这也表明LIBS技术结合化学计量学分析在未来光谱化学分析领域有很大应用前景。 研究的结果不仅为现代农业的土壤养分空间分布检测和农田精准施肥技术的应用起指导作用, 还为田间使用的便携式LIBS土壤检测仪的开发奠定了理论基础。
激光诱导击穿光谱 土壤 定标曲线法 化学计量学分析 Laser-induced breakdown spectroscopy Soil Calibration curve Chemometrics analysis 
光谱学与光谱分析
2017, 37(9): 2879
作者单位
摘要
浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
市场上陈皮以次充好现象时有发生, 而年份是衡量陈皮品质的重要指标。 研究用高光谱技术结合化学计量学算法, 在380~1 023及874~1 734 nm两波段对不同放置方式的陈皮进行年份鉴别。 为了寻找更合适的波段和模拟实际生产检测中陈皮放置的随机性, 采集了四个年份共180个样本在380~1 023及874~1 734 nm的正、 反面高光谱图像(720幅)。 用主成分分析法(principal component analysis, PCA)对陈皮光谱信息进行定性分析, 发现不同年份陈皮基于正反面光谱有明显的聚类; 而后以回归系数法(regression coefficient, RC)选取陈皮年份相关的特征波段以减少变量; 用偏最小二乘判别分析(partial least squares discriminant analysis, PLS-DA)基于全波段、 特征波段对三种放置方式(正、 反、 正反混合)的样本建立模型, 最后对特征波段建立线性PLS-DA模型和非线性ELM模型并进行比较分析。 研究表明: 在380~1 023 nm的预测效果大多高于874~1 734 nm, 基于非线性ELM的判别结果均高于线性PLS-DA模型, 准确率最高可达到建模集10000%, 预测集9833%, 陈皮正、 反、 正反混合三种放置方式预测准确率多数可高于85%, 故采用高光谱技术可实现对不同放置方式的陈皮年份进行无损鉴别, 为进一步开发便携仪器或在线生产设备提供方法和理论依据。
高光谱技术 陈皮 年份 化学计量学 极限学习机 Hyperspectraltechnique Dried tangerine Year Chemometrics models Extreme learning machine 
光谱学与光谱分析
2017, 37(6): 1866
作者单位
摘要
1 浙江大学农业与生物技术学院, 生物技术研究所, 浙江 杭州 310058
2 浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
应用可见/近红外高光谱对细菌性角斑病早期胁迫下的黄瓜叶片中所含过氧化物酶(peroxidase, POD)活性进行检测。 在380~1 030 nm光谱范围获取120个样本(健康, 病害轻微感染1级和2级)的光谱曲线, 并使用分光光度计法测量感染病害样本中的过氧化物酶活性值。 采用单因素方差分析(analysis of variance, ANOVA)对三种不同程度早期病害胁迫下过氧化物酶活性值进行统计分析, 结果表明不同程度病害胁迫下黄瓜叶片中的过氧化物活性存在显著性差异(p=005)。 采用SPXY方法将样本分为建模集(80个样本)与预测集(40个样本)。 采用random frog(RF)和回归系数法(regression coefficient, RC)方法提取特征波段, 并建立过氧化物酶活性值的偏最小二乘回归(partial least square regression, PLSR)预测模型。 最终得到RF-PLSR具有最佳的预测效果, 预测集相关系数为0816, 预测均方根误差为11235。 研究结果表明高光谱结合化学计量学方法可以实现细菌性角斑病早期胁迫下黄瓜叶片中过氧化物酶活性的测定, 为植物病害的早期无损诊断提供参考。
高光谱 黄瓜细菌性角斑病 过氧化物酶 化学计量学方法 Hyper-spectra BALD Cucumber leaves POD Chemometrics method 
光谱学与光谱分析
2017, 37(6): 1861

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!