Minghui Li 1,2Renhong Gao 1,2Chuntao Li 3,4Jianglin Guan 3,4[ ... ]Ya Cheng 1,2,3,6,7,**
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
5 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
6 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
7 Hefei National Laboratory, Hefei 230088, China
We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate (TFLN). The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching. Thanks to the erbium-ytterbium co-doping providing high optical gain, the ultralow loss nanostructuring, and the excitation of high-Q coherent polygon modes, which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes, single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold, under a 980-nm-band optical pump. The threshold was measured as low as 1 µW, which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers. The conversion efficiency reaches 4.06 × 10-3, which is also the highest value reported in single-mode active TFLN microlasers.
lithium niobate microcavities microdisk lasers 
Chinese Optics Letters
2024, 22(4): 041301
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
3 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Whispering-gallery-mode (WGM) microresonators can greatly enhance light–matter interaction, making them indispensable units for frequency conversion in nonlinear optics. Efficient nonlinear wave mixing in microresonators requires stringent simultaneous optical resonance and phase-matching conditions. Thus, it is challenging to achieve efficient frequency conversion over a broad bandwidth. Here, we demonstrate broadband second-harmonic generation (SHG) in the x-cut thin-film lithium niobate (TFLN) microdisk with a quality factor above 107 by applying the cyclic quasi-phase-matching (CQPM) mechanism, which is intrinsically applicable for broadband operation. Broadband SHG of continuous-wave laser with a maximum normalized conversion efficiency of ∼15%/mW is achieved with a bandwidth spanning over 100 nm in the telecommunication band. Furthermore, broadband SHG of femtosecond lasers, supercontinuum lasers, and amplified spontaneous emission in the telecommunication band is also experimentally observed. The work is beneficial for integrated nonlinear photonics devices like frequency converters and optical frequency comb generator based on second-order nonlinearity on the TFLN platform.
lithium niobate whispering-gallery mode broadband second-harmonic generation cyclic quasi-phase matching 
Chinese Optics Letters
2024, 22(3): 031903
Author Affiliations
Abstract
1 54th Institute, China Electronics Technology Group Corporation, Shijiazhuang 050011, China
2 Hebei Key Laboratory of Photonic Information Technology and Application (PITA), Shijiazhuang 050011, China
3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
We propose and demonstrate an integrated microwave photonic sideband selector based on the thin-film lithium niobate (TFLN) platform by integrating an electro-optic Mach–Zehnder modulator (MZM) and a thermo-optic tunable flat-top microring filter. The sideband selector has two functions: electro-optic modulation of wideband RF signal and sideband selection. The microwave photonic sideband selector supports processing RF signals up to 40 GHz, with undesired sidebands effectively suppressed by more than 25 dB. The demonstrated device shows great potential for TFLN integrated technology in microwave photonic applications, such as mixing and frequency measurement.
lithium niobate microwave photonics sideband selector 
Chinese Optics Letters
2024, 22(3): 031304
张程 1徐银 1,2董越 1,2张博 1,2倪屹 1,2,*
作者单位
摘要
1 江南大学物联网工程学院,江苏 无锡 214122
2 江南大学先进技术研究院,江苏 无锡 214122
模式转换器承担着波导基模到高阶模的转换任务,是片上多模光传输、模分复用传输的重要器件。基于薄膜铌酸锂平台,提出一种利用V形硅阵列的薄膜铌酸锂波导模式转换器,转换结构主要包括沿光传输方向排布的V形硅阵列,位于薄膜铌酸锂波导顶部。基于上述结构进行详细的设计与优化分析,在中心波长为1550 nm、转换长度仅为11 μm的情况下,实现了输入TE0模到输出TE1模的高效转换。模式转换效率为96.8%,串扰为-28.6 dB,插入损耗为0.78 dB。进一步对转换结构进行横向扩展,实现了输入TE0模到输出TE2模的高效转换。模式转换效率为91.3%,串扰为-14.3 dB,插入损耗为1 dB。若继续扩展,可获得其他高阶模。本器件及设计方法有望在薄膜铌酸锂波导多模光传输方向发挥优势,推动薄膜铌酸锂光子集成器件及回路的发展。
集成光学 集成光器件 光波导 铌酸锂 微光学器件 
激光与光电子学进展
2024, 61(5): 0523001
Author Affiliations
Abstract
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 School of Physics, Ningxia University, Yinchuan 750021, China
3 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Lithium niobate is a material that exhibits outstanding electro-optic, nonlinear optical, acousto-optic, piezoelectric, photorefractive, and pyroelectric properties. A thin-film lithium niobate photonic crystal can confine light in the sub-wavelength scale, which is beneficial to the integration of the lithium niobate on-chip device. The commercialization of the lithium niobate on insulator gives birth to the emergence of high-quality lithium niobate photonic crystals. In order to provide guidance to the research of lithium niobate photonic crystal devices, recent progress about fabrication, characterization, and applications of the thin-film lithium niobate photonic crystal is reviewed. The performance parameters of the different devices are compared.
lithium niobate photonic crystal integrated optics 
Chinese Optics Letters
2024, 22(3): 033602
Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing, China
3 China Jiliang University, College of Optical and Electronic Technology, Hangzhou, China
4 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
5 Chinese Academy of Sciences (CAS), Shanghai Institute of Optics and Fine Mechanics (SIOM), State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication, computation, metrology, and sensing. The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit (PIC) devices. Here, we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface, lithium niobate on insulator photonic waveguides, and electrodes within a PIC device. As proofs of concept, we showcase the generation of a focus beam with reconfigurable arbitrary polarizations, switchable focusing with lateral focal positions and focal length, orbital angular momentum light beams as well as Bessel beams. Our measurements indicate modulation speeds of up to the gigahertz rate. This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system, paving the way for potential applications in optical communication, computation, sensing, and imaging.
metasurface photonic integrated circuit lithium niobate on insulator high-speed modulation 
Advanced Photonics
2024, 6(1): 016005
作者单位
摘要
浙江大学光电科学与工程学院,浙江 杭州 310027
铌酸锂晶体(LN)凭借优异的光学特性,已经成为构建新一代集成光电器件和光学系统的关键性基础材料。基于强场-物质相互作用的超快激光选择性材料修饰技术使得在三维空间中按需创建LN基功能化微结构成为可能,为探索LN光子学、发展LN先进加工技术、构建集成光子器件和光学系统提供了有力的工具。本文聚焦近年来国内外研究团队所取得的重要进展,从超快激光修饰LN基本原理出发,重点介绍了超快激光在LN内部诱导微纳光子结构的新现象、新机制和新应用,包括超快激光直写光波导、制备非线性光子晶体、操控铁电畴、多维光存储等前沿领域的最新成果。最后,对超快激光赋能LN光子学进行了展望。
超快激光 激光诱导 铌酸锂 光子结构 
激光与光电子学进展
2024, 61(1): 0116001
程亚 1,2,*
作者单位
摘要
1 华东师范大学物理与电子科学学院,上海 200241
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800

近年来,薄膜铌酸锂光子集成技术发展极为迅速,其背后有着深刻的物理、材料、技术原因。单晶薄膜铌酸锂为解决光子集成芯片领域长期存在的低传输损耗、高密度集成以及低调制功耗需求提供了至今为止综合性能最优的解决方案。面向未来的新一代高速光电器件与超大规模光子集成芯片应用,本文回顾了薄膜铌酸锂光子技术的起源及其近期的快速发展,讨论了若干薄膜铌酸锂光子结构的加工技术,并展示了一系列当前性能最优的薄膜铌酸锂光子集成器件与系统,包括超低损耗可调光波导延时线、超高速光调制器、高效率量子光源,以及高功率片上放大器与片上激光器。这些器件以其体积小、质量轻、功耗低、性能好的综合优势,将对整个光电子产业产生难以估量的影响。

光子集成 光波导 光调制器 微波光子学 光量子集成器件 薄膜 薄膜铌酸锂 
中国激光
2024, 51(1): 0119001
Jiangbo Lyu 1,2†Tao Zhu 1,2†Yan Zhou 1Zhenmin Chen 1[ ... ]Shaohua Yu 1
Author Affiliations
Abstract
1 Peng Cheng Laboratory, Shenzhen 518055, China
2 Department of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
3 Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices. Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic materials such as lithium niobate (LN). To the best of our knowledge, this work proposes for the first time the inverse design method for anisotropic materials to optimize the structure of anisotropic-material based photonics devices. Specifically, the orientation dependent properties of anisotropic materials are included in the adjoint method, which provides a more precise prediction of light propagation within such materials. The proposed method is used to design ultra-compact wavelength division demultiplexers in the X-cut thin-film lithium niobate (TFLN) platform. By benchmarking the device performances of our method with those of classical scalar-based inverse design, we demonstrate that this method properly addresses the critical issue of material anisotropy in the X-cut TFLN platform. This proposed method fills the gap of inverse design of anisotropic materials based photonic devices, which finds prominent applications in TFLN platforms and other anisotropic-material based photonic integration platforms.
integrated photonics inverse design for anisotropic materials adjoint method lithium niobate 
Opto-Electronic Science
2023, 2(11): 230038
作者单位
摘要
南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,南京210023
为了在波导中轻松实现相互作用波之间的相位匹配,产生有效的二次谐波,设计了一种新型条形波导--二氧化硅-铌酸锂-二氧化硅(SiO2-LiNbO3-SiO2),该条形波导由SiO2和无蚀刻z切割的LiNbO3组成,通过调整波导结构分析了波导的色散,研究了不同尺寸的SiO2对基波与二次谐波相位匹配点的影响,分析了该条形波导倍频的可行性,并利用脉冲的振幅和宽度对频谱展宽的特性,实现超宽带连续谱。仿真结果表明:在覆盖层SiO2宽度为1 600 nm、高度为400 nm的条形波导结构中,使用脉冲振幅为107 a.u.,脉冲宽度为10 fs的超短脉冲,得到了一个带宽为1 302.5 nm的超宽带连续谱。
铌酸锂 相位匹配 二次谐波产生 超连续谱 光通信 lithium niobate, phase matching, second harmonic g 
光通信技术
2023, 47(4): 0015

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!