作者单位
摘要
西安应用光学研究所,陕西 西安 710065
主、次镜支撑技术是共光路光学系统的关键技术之一。针对在±60℃温度变化范围内工作的机载共光路光学系统,根据热膨胀系数匹配原则分别选择殷钢和ULE、钛合金和K9配对作为主、次镜及支撑结构的材料,并设计了高刚度无热化柔性支撑结构。最后,利用自研的光机联合仿真程序对主、次镜面型及整个光学系统的成像质量进行了光机一体化分析。分析结果表明:殷钢和ULE配对时,在±60 ℃均匀温差和10 ℃轴向、径向温度梯度下,主、次镜去除离焦后面型优于(1/100)λ,整个光学系统点列图RMS半径小于艾里斑半径,相面中心波前优于(1/50)λ,MTF@63 lp/mm优于0.45,无热化柔性支撑的一阶固有频率高达263 Hz;钛合金和K9配对时,60 ℃均匀温差下系统成像指标满足使用要求,10 ℃轴向、径向温度下成像质量无法满足使用要求。对装调完的殷钢和ULE配对光机系统进行了低温下分辨率测试,分辨率无明显变化,说明设计及分析可行。
共光路 光机一体化分析 柔性支撑 温度梯度 common optical path opto-mechanical integration analysis flexible support temperature gradient 
应用光学
2023, 44(5): 998
作者单位
摘要
西安应用光学研究所,陕西 西安 710065
针对共光路系统对环境温度的适应性问题,以温度-光学变形特性研究为基础,提出了一种基于综合传热的主镜组件分区域热控方法。建立了主镜组件的传热模型并分析了典型热控工况下的温度分布特性;对不同材质的主镜进行了热仿真,以热光学试验结果修正模型,使主镜温度场的仿真与实测结果绝对偏差小于1.4 ℃,同时确定了主镜组件的温度梯度控制阈值;采用分区传热策略,使主镜组件达到高温升水平、低温度梯度的热控目标。以某主镜组件为对象进行了仿真与试验:当主镜平均温升达到16 ℃以上时,镜体轴向温度梯度≤2.5 ℃,径向与周向温度梯度≤2.4 ℃,主镜面形变化量小于0.005 λ,该结果可为共光路系统的整体热控方案设计提供优化思路。
共光路系统 主反射镜 温度梯度 热控 common optical path system primary mirror temperature gradient thermal control 
应用光学
2023, 44(3): 500
作者单位
摘要
1 山东大学晶体材料国家重点实验室,新一代半导体材料研究院,济南 250100
2 齐鲁工业大学(山东省科学院),材料科学与工程学院,济南 250353
宽禁带氮化镓(GaN)材料以其独特的性质和应用前景成为国内外研究的热点,高质量GaN单晶衬底的制备是获得性能优异的光电子器件和功率器件的基础。钠助熔剂法生长条件温和,易获得高质量、大尺寸的GaN单晶,是一种具有广阔商业化前景的GaN单晶生长方法。钠助熔剂法自20世纪90年代末期被发明以来,经过20多年的发展,钠助熔剂法生长的晶体在尺寸与质量上都取得了长足的进步。本文从晶体生长原理和关键工艺(籽晶选择、温度梯度以及添加剂)等方面综述了钠助熔剂法生长GaN单晶研究进展,并对其面临的挑战和未来发展趋势进行了展望。
氮化镓单晶 钠助熔剂法 原料比 温度梯度 添加剂 籽晶 gallium nitride single crystal sodium flux method raw material ratio temperature gradient additive seed crystal 
人工晶体学报
2023, 52(2): 183
张俊 1,2,3宫雪非 1,2
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所,江苏 南京 210042
2 中国科学院天文光学技术重点实验室(南京天文光学技术研究所),江苏 南京 210042
3 中国科学院大学,北京 100049
大口径、长焦距的水平光学检测系统极易受到气流扰动的影响,气流扰动会引起光路中温度、速度、压强等多个物理量在时间和空间上随机动态变化。尤其是温度在空间上呈现梯度分布,以及在时间上存在缓慢漂移,均将会直接导致空气折射率的动态变化,从而导致点扩散函数退化、引起波前倾斜、出现波前时变。为了抑制气流扰动对检测光路的影响以及提高检测精度,基于计算流体动力学(Computational Fluid Dynamics, CFD)方法,提出了风扇强制对流的室内温度场控制方法,确定风扇放置方式与风扇数量。采用温度最大峰值(Peak to Valley, PV)并引入了最大光程差概念,综合评价光路温度场的均匀性。经过多次实验验证,采用强制对流方案,将0°像散标准差从 $0.146 \lambda $降低到 $ 0.026\;3 \lambda\;(\lambda=632.8\; \mathrm{nm}) $,显著提高了光路温度场的均匀性与稳定性,大幅降低了光学检测误差,提高了检测精度。为今后保障狭长通道内长光路、大口径光学检测系统的测量精度提供了借鉴。
强制对流 光学检测 气流扰动 温度梯度 forced convection optical testing airflow disturbance temperature gradient 
红外与激光工程
2022, 51(12): 20220204
陈家颖 1,2,3,*张新彬 1,2陈怀熹 1,2,3冯新凯 1,2,3[ ... ]梁万国 1,2,3
作者单位
摘要
1 中国科学院福建物质结构研究所, 福州 350002
2 中国福建光电信息科学与技术创新实验室(闽都创新实验室), 福州 350108
3 中国科学院大学, 北京 100049
4 福州大学化学学院, 福州 350108
5 福建师范大学化学与材料学院, 福州 350117
本文设计了一种梯形的周期极化掺镁铌酸锂(PPMgLN)波导, 并通过在传播方向上引入温度梯度来拓宽其倍频(SHG)过程的泵浦光源可接收带宽。通过有限差分的光束传输法, 计算波导的有效折射率, 并进行波导尺寸的设计。结果表明, 通过改变梯形波导不同位置的温度, 使其形成一个温度梯度, 可拓宽泵浦光源的波长可接收带宽。本文所设计的PPMgLN波导最大泵浦光源可接收带宽为C波段, 即1 530~1 565 nm, 该波导可倍频C波段, 得到输出波段带宽为765~782.5 nm, 温度调谐范围为30~150 ℃。
周期极化铌酸锂 波导 准相位匹配 倍频 温度梯度 带宽扩展 C波段 periodically polarized lithium niobate waveguide quasi phase matching frequency doubling temperature gradient bandwidth extension C-band 
人工晶体学报
2022, 51(11): 1830
阮家森 1,2段利红 1,2,*全伟 1,2
作者单位
摘要
1 北京航空航天大学仪器科学与光电工程学院,北京 100191
2 北京航空航天大学杭州创新研究院(余杭),浙江 杭州 310023

无自旋交换弛豫(SERF)原子惯性测量仪表因具有超高的理论精度和易于集成等优势,成为超高精度惯性测量仪表的重要发展方向。均匀且稳定的温度场是SERF惯性测量仪表实现超高精度测量的重要基础,提出了一种基于光谱吸收的碱金属气室全域温度梯度测量方法,通过在线获取气室不同位置激光入射前后的强度,根据光强比与温度的函数关系可获得气室内部相应位置的温度信息。较为全面地分析了光谱吸收法实现在线碱金属气室温度测量的可行性以及线偏振检测光频率对测温结果的影响,并通过有限元仿真与实验测试结果的对比,验证了所提方法的有效性。所提温度梯度测量方法是基于仪表原有设备实现的,不引入额外干扰,简单可靠且可操作性强。此方法的提出为SERF惯性测量仪表的加热系统设计与性能提升提供了重要的技术支撑。

测量 光谱吸收法 温度测量 温度梯度 无自旋交换弛豫 
中国激光
2022, 49(19): 1904005
作者单位
摘要
1 河南理工大学材料科学与工程学院, 河南省深地材料科学与技术重点实验室, 焦作 454003
2 焦作师范高等专科学校, 焦作 454000
3 焦作市东星炭电极有限公司, 焦作 454150
4 赤峰学院, 内蒙古自治区高压相功能材料重点实验室, 赤峰 024000
5 中材人工晶体研究院有限公司, 北京 100018
掺杂是调控金刚石性能的一种重要手段。本文采用温度梯度法, 在5.6 GPa、1 312 ℃的条件下, 选用Fe3P作为磷源进行磷掺杂金刚石大单晶的合成。金刚石样品的显微光学照片表明, 随着Fe3P添加比例的增加, 金刚石晶体的颜色逐渐变深, 包裹体数量逐渐增加, 晶形由板状转变为塔状直至骸晶。金刚石晶形的变化表明Fe3P的添加使生长金刚石的V形区向右偏移, 这是Fe3P改变触媒特性的缘故。红外光谱分析表明, Fe3P的添加使金刚石晶体中氮含量上升, 这说明磷的进入诱使氮原子更容易进入金刚石晶格中。激光拉曼光谱测试表明, 随着Fe3P添加比例的增加, 所合成的掺磷金刚石的拉曼峰位变化不大, 其半峰全宽(FWHM)值变大, 这说明磷的进入使得金刚石晶格畸变增加。XPS测试结果显示, 随着Fe3P添加比例的增加, 金刚石晶体中磷相对碳的原子百分含量也会增加, 这意味着添加Fe3P所合成的金刚石晶体中有磷存在。
掺杂 (111)面 金刚石大单晶 温度梯度法 超硬材料 Fe3P Fe3P doping (111) surface large diamond single crystal temperature gradient method superhard material 
人工晶体学报
2022, 51(4): 587
作者单位
摘要
1 太原理工大学新型传感器与智能控制教育部重点实验室,太原 030024
2 太原理工大学物理与光电工程学院,太原 030024
3 代尔夫特理工大学机械海运与材料工程学院,荷兰代尔夫特 2600
4 山西中聚晶科半导体有限公司,晋中 030600
工业生产蓝宝石晶体过程中,引晶步骤有着至关重要的地位。引晶必须在温度梯度较小,温度分布趋于稳定的条件下进行。目前,工业生产蓝宝石主要依靠人工经验操控籽晶杆实现引晶操作,但是人工引晶操作的准确性不高会导致成品品质不佳、资源浪费。为此,本文提出一种基于蓝宝石视觉辐条图案识别方法来检测蓝宝石熔体状态自由液面状态,从而实现一种高效率引晶的机制。此方法利用经典骨架化算法细化辐条图案,Harris算子实现特征信息的提取,提取的特征信息放入运动轨迹模型中判断熔体稳定性,分析液面温度分布稳定性从而实现引晶。结果表明,此算法具有有效性,蓝宝石晶体引晶效率大大提高,生产出的成品良率也有提升,可有效指导蓝宝石的工业生产。
蓝宝石 引晶 温度梯度 辐条图案 图案识别 运动轨迹 骨架化算法 特征信息 sapphire seeding temperature gradient spoke pattern pattern recognition motion trace skeletonization algorithm feature information 
人工晶体学报
2022, 51(2): 256
作者单位
摘要
同济大学物理科学与工程学院,高等研究院,上海 200092
采用自主设计改造的温梯炉,成功生长了不同浓度Ho3+、Y3+掺杂的CaF2及SrxCa1-xF2晶体,晶体尺寸约为15 mm×55 mm,生长周期约为6 d,能够实现7种不同浓度晶体的同步生长,并选取其中的4%(原子数分数)Ho,4%Y∶CaF2晶体进行分析,吸收测试表明,该晶体448 nm和643 nm处吸收峰的吸收截面分别是1.13×10-20 cm2和0.84×10-20 cm2, J-O理论分析得到了晶场强度参数Ωt(t=2、4、6)、辐射跃迁几率、荧光分支比和辐射寿命。在448 nm氙灯激发下,经计算得到该晶体在546 nm、650 nm 和752 nm处的发射截面分别为10.450×10-21 cm2、8.737×10-21 cm2和5.965×10-21 cm2,测得5F4和5F5能级的寿命分别为33.5 μs和17.7 μs。在640 nm LD泵浦激发下,经计算得到该晶体2 031 nm处发射截面为5.375×10-21 cm2,2 847 nm处发射截面为10.356×10-21 cm2,测得5I7和5I6 能级的寿命分别为4.37 ms 和1.85 ms。以上结果表明,多孔坩埚温梯法能够大大提高激光晶体稀土离子掺杂浓度筛选的效率,加快新型激光晶体材料的研发速度。
氟化钙晶体 温度梯度法 晶体生长 多孔坩埚 激光晶体 光谱性能 calcium fluoride crystal temperature gradient technology crystal growth porous crucible laser crystal spectral property 
人工晶体学报
2022, 51(2): 200
作者单位
摘要
1 上海大学材料科学与工程学院,上海市钢铁冶金新技术开发应用重点实验室,省部共建高品质特殊钢冶金与制备国家重点实验室,上海 200072
2 奥趋光电技术(杭州)有限公司,杭州 311199
借助专业晶体生长模拟软件FEMAG和自主开发的对流、传质、过饱和度及生长速率预测等有限元模块研究了物理气相传输法(PVT)同质外延生长氮化铝(AlN)单晶工艺时的初始传热及传质过程,并分析了不同形状籽晶台对生长室内的温度场、流场、过饱和度及生长速率的影响。温度场模拟结果表明籽晶台侧部角度改变可影响籽晶表面轴向及径向温度梯度,流场及传质模拟表明籽晶台侧部角度变化对籽晶台周边的传质有巨大影响。传质及过饱和度模拟结果表明,当籽晶台侧部角度为130°时,籽晶表面温度梯度较小且可以完全抑制籽晶台侧部多晶沉积,有利于通过同质外延工艺生长出无寄生、无裂纹的高质量氮化铝单晶锭。
氮化铝 物理气相传输法 同质外延生长 籽晶台 数值模拟 过饱和度 温度梯度 AlN PVT homoepitaxial growth seed-holder numerical simulation supersaturation temperature gradient 
人工晶体学报
2022, 51(1): 27

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!