作者单位
摘要
1 战略支援部队信息工程大学 信息系统工程学院,郑州 450001
2 中国电子科技集团公司第十二研究所,北京 100015
3 中国电子科技集团公司第二十九研究所,成都 610036
微波功率模块(MPM)是真空电子器件和固态电子器件组合而成的一种新型微波功率器件,具有频率高、频带宽、功率大、体积重量小等特点,它使常规行波管的应用变得更加便利和广泛。现代战争向雷达、电子战综合一体化方向发展,这就要求功放既能工作在高峰值功率、低占空比的高模工作方式,也能工作在低峰值功率、准连续波的低模工作方式,针对这一需求,结合电子系统收发共孔径的要求,提出了T/R双模MPM技术。T/R双模MPM技术的核心是T/R双模行波管,基于三端口双向T/R行波管,通过在慢波系统的衰减器附近设置一个耦合口,实现行波管的信号反向接收功能;通过T/R双模行波管设计、双模放大均衡组件、双调制栅极电源等技术实现MPM的双模双向功能。T/R双模MPM应用前景广阔,特别是在基于无人机平台的作战应用中的具有明显优势。
微波功率模块 T/R行波管 收发共孔径 功放 均衡器 microwave power module T/R traveling wave tube common aperture oftransceiver power amplifier equalizer 
强激光与粒子束
2024, 36(1): 013003
作者单位
摘要
中国电子科技集团公司第十二研究所微波电真空器件国家级重点实验室, 北京 100015
设计了用于 G波段行波管的聚焦极调制皮尔斯电子枪, 电子注电压 20 kV, 电流50.9 mA, 注腰半径 0.056 mm, 射程 10.3 mm。利用热-结构耦合分析和电子注轨迹仿真方法, 分析了热形变对电子枪性能造成的显著影响。为了消除电子枪热形变的影响, 设计了装配模具进行补偿, 并得到了实验验证。该电子枪已用于多种 G波段行波管, 解决了关键部件技术问题。
G波段行波管 电子枪 热形变 G band traveling wave tube electron gun thermal deformation 
太赫兹科学与电子信息学报
2023, 21(7): 895
作者单位
摘要
北京真空电子技术研究所微波电真空器件国家重点实验室, 北京 100015
为分析折叠波导行波管互作用电路切断位置的功率和频谱特性, 提出并研制出一只四端口 W波段脉冲行波管。对该行波管频带内互作用电路的 S参数、切断处功率和对应频谱特性进行测试, 分析表明: 端口 2(输入段的切断)的功率幅值主要取决于饱和状态下行波管的输入功率, 与输入段增益不成正比关系分布; 端口 3(输出段切断)功率主要取决于端口匹配性能, 其数值计算功率和测试数据吻合良好。本文研究为毫米波及太赫兹行波管切断设计提供了一种有效方法。
行波管 切断位置 折叠波导 W波段 Traveling Wave Tube sever region Folded Waveguide W-band 
太赫兹科学与电子信息学报
2023, 21(10): 1211
作者单位
摘要
中国电子科技集团公司第十二研究所, 北京 100015
针对高波段空间行波管的卫星通信应用需求, 介绍了 E波段连续波空间行波管的研制情况。该行波管通过进一步优化折叠波导慢波结构参数和调整周期跳变方案, 实现改善带内增益波动性、提高效率的目的。研制出的样管在 14.7 kV、74 mA条件下, 实现电子注动态流通率高于 98%, 在 71~76 GHz范围内, 输出功率大于 85 W, 总效率大于 37%, 增益大于 40 dB。
E波段 折叠波导 连续波 空间行波管 E-band Folded Waveguide Continuous Wave space Traveling Wave Tube 
太赫兹科学与电子信息学报
2023, 21(10): 1194
作者单位
摘要
中国科学院 空天信息创新研究院,北京 101407
针对空间行波管阴极预热过程中热子电流周期性波动的故障,建立热子等效电路估算了热子电流波动范围,采用激光测振频谱分析的手段测试了热子双螺旋结构的固有频率,进而完成了问题定位,对热子电流周期性波动进行了机理分析,阐明了热子电流发生周期性波动的条件,并提出了解决措施,同时从理论上定性分析了热子电流波动对空间行波管可靠性的影响,并通过试验验证了可靠性影响分析结论的正确性。
空间行波管 热子电流 周期性波动 双螺旋结构 固有频率 space traveling wave tube heater current periodic fluctuation double-helix structure natural frequency 
强激光与粒子束
2023, 35(11): 113002
作者单位
摘要
电子科技大学 电子科学与工程学院,四川 成都 611731
通过理论研究和粒子仿真(Particle in Cell,PIC),设计了一支工作在基波TE01模式下,采用周期性介质加载(PDL)波导的220 GHz回旋行波管(gyrotron traveling wave tube,Gyro-TWT)。通过研究寄生振荡的起振阈值和加载介质环,成功抑制了寄生振荡(绝对不稳定性振荡和返波振荡)。分别采用了非线性理论程序与粒子仿真对注波互作用进行研究,对比了两种结果基本一致。PIC仿真结果显示,优化后的回旋行波管,工作在220 GHz时,在输入70 kV和3 A电子注的情况下,饱和输出功率为55.61 kW,对应的效率为26.48%,饱和增益为53.56 dB,-3 dB带宽为12 GHz。
回旋行波管 寄生振荡 周期介质加载 非线性理论 粒子模拟 220 GHz gyrotron traveling wave tube(Gyro-TWT) parasitic oscillations periodic dielectric loaded nonlinear theory particle in cell(PIC) 220 GHz. 
红外与毫米波学报
2022, 41(6): 1042
杨杰 1,2,*徐寿喜 1王勇 1,2王笑妍 1,2
作者单位
摘要
1 中国科学院空天信息创新研究院 高功率微波源与技术国防科技创新重点实验室,北京 100140
2 中国科学院大学 电子电气与通信工程学院,北京 100049
利用线性和非线性理论研究了电子注偏心对0.22 THz回旋行波管注波互作用的影响。基于色散方程研究了电子注偏心对线性增益、绝对不稳定性的起振电流和返波振荡的起振条件的影响。引入自洽非线性理论,分析了电子注偏心对输出功率和注波互作用效率的作用。同时,在考虑速度离散的情况下,研究了电子注质量对共焦波导注波互作用的影响。结果表明,电子注偏心会导致效率的降低。
电子注偏心 共焦波导 太赫兹 回旋行波管 electron beam misalignment confocal waveguide terahertz gyrotron traveling wave tube(Gyro-TWT) 
红外与毫米波学报
2022, 41(4): 702
作者单位
摘要
中国电子科技集团公司第十二研究所微波电真空器件国家重点实验室, 北京 100015
介绍了一种面向高速无线通信应用的 E波段连续波行波管放大器(TWTA)。该放大器将 E波段折叠波导行波管和小型化高压电源集成为一体, 外部仅需低压供电, 使用便捷。放大器主要性能指标包括: 工作频率 81~86 GHz, 饱和输出功率 >80 W, 小信号增益 >38 dB, 总效率 > 22%, 外形尺寸为 38 cm×20 cm×6.3 cm, 可满足机载使用环境, 具有大功率、宽带、高效率、小型化及高可靠的优点。
E波段 通信 行波管放大器 E-band communication Traveling Wave Tube Amplifier 
太赫兹科学与电子信息学报
2022, 20(5): 419
作者单位
摘要
中国电子科技集团公司第十二研究所,北京100015
提出一种新型的低截止电压环形阴极聚焦极控电子枪结构。在传统皮尔斯电子枪和杆控电子枪基础上,创新性地将球面阴极设计为环形发射区和不发射锥体区两部分,以实现更低的聚焦极截止电压,降低调制器单元的开关损耗,提升最大调制频率。研究表明,在导流系数为0.53 μP 的条件下,通过引入不发射锥形体,使阴极的截止电压降低一半,截止电压幅值由1 250 V降至600 V,对应电源调制器的等效调制损耗降低为1/4,可使最大调制频率提高4 倍,对电子对抗和雷达等应用系统的性能提升具有重要意义。
聚焦极 截止电压 环形阴极 电子枪 太赫兹行波管 focusing electrode cut-off voltage annular cathode electron gun terahertz traveling wave tube 
太赫兹科学与电子信息学报
2022, 20(4): 312
作者单位
摘要
1 电子科技大学 电子科学与工程学院,四川 成都 610054
2 南京三乐电子集团有限公司,江苏 南京 210009
提出了一种悬置双微带曲折线慢波结构,介质基板悬置于封闭金属腔内,基板上下表面各镀有一条金属曲折线结构。该结构具有双电子束通道,电磁波具有对称的分布,因此,电磁波可以通过上下腔体与两束带状电子束互作用。通过仿真软件分析了其高频特性,设计工作电压和电流分别为2050 V和0.2 A,PIC仿真结果表明,在36 GHz处最大输出增益为26 dB,具有8 GHz的3-dB饱和功率带宽。实验测得该慢波结构反射损耗低于-10 dB,同时分析了慢波结构制备过程中影响传输损耗的主要因素。
行波管 平面慢波结构 微带曲折线 traveling wave tube planar slow wave structure microstrip meander-line 
红外与毫米波学报
2022, 41(2): 437

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!