Author Affiliations
Abstract
1 Department of Pain Management, The First Affiliated Hospital, Jinan University, Guang Zhou, Guangdong 510630, P. R. China
2 Department of Pain Management, The First People’s Hospital of Foshan, Foshan City, Guangdong 528000, P. R. China
Temporary spinal cord stimulation (tSCS) can effectively reduce the pain and severity of postherpetic neuralgia (PHN). However, there are no effective and objective methods for predicting the effects of tSCS on PHN. Laser speckle contrast imaging (LSCI) is frequently used in neurology to evaluate the effectiveness of treatment. To assess the accuracy of LSCI in predicting the impact of tSCS on PHN, 14 adult patients receiving tSCS treatments for spinal nerve-innervated (C6-T2) PHN participated in this observational study. Visual analog scale (VAS) assessments and LSCI blood flow images of the fingers were recorded after the tSCS procedure. The results showed that the VAS scores of all patients decreased significantly. Moreover, the blood flow index (BFI) values were significantly higher than they were before the procedure. Increased blood flow and pain alleviation were positively correlated. The findings indicated that spinal nerve PHN (C6-T2) was significantly reduced by tSCS. Pain alleviation by tSCS was positively correlated with increased blood flow in the hand. The effect of tSCS on PHN may thus be predicted using an independent and consistent indicator such as LSCI.
Laser speckle contrast imaging temporary spinal cord stimulation postherpetic neuralgia 
Journal of Innovative Optical Health Sciences
2024, 17(1): 2350014
Author Affiliations
Abstract
1 Departamento de Física Teórica Atómica y Óptica, Universidad de Valladolid, Valladolid, Spain
2 Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, Talence, France
3 European XFEL GmbH, Schenefeld, Germany
4 Laboratory for Laser Energetics, Rochester, New York, USA
5 CEA-DAM, DIF, Arpajon, France
6 University of Michigan, Ann Arbor, Michigan, USA
7 Los Alamos National Laboratory, Los Alamos, New Mexico, USA
8 Lawrence Livermore National Laboratory, Livermore, California, USA
9 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
10 Technische Universität Dresden, Dresden, Germany
11 Institute of Physics of the ASCR, Prague, Czech Republic
12 CEA-CESTA, CS 60001, Le Barp Cedex, France
13 Blackett Laboratory, Imperial College London, London, UK
14 Department of Astrophysics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, USA
15 Center for Energy Research, University of California San Diego, San Diego, California, USA
Diagnosing the evolution of laser-generated high energy density (HED) systems is fundamental to develop a correct understanding of the behavior of matter under extreme conditions. Talbot–Lau interferometry constitutes a promising tool, since it permits simultaneous single-shot X-ray radiography and phase-contrast imaging of dense plasmas. We present the results of an experiment at OMEGA EP that aims to probe the ablation front of a laser-irradiated foil using a Talbot–Lau X-ray interferometer. A polystyrene (CH) foil was irradiated by a laser of 133 J, 1 ns and probed with 8 keV laser-produced backlighter radiation from Cu foils driven by a short-pulse laser (153 J, 11 ps). The ablation front interferograms were processed in combination with a set of reference images obtained ex situ using phase-stepping. We managed to obtain attenuation and phase-shift images of a laser-irradiated foil for electron densities above ${10}^{22}\;{\mathrm{cm}}^{-3}$ . These results showcase the capabilities of Talbot–Lau X-ray diagnostic methods to diagnose HED laser-generated plasmas through high-resolution imaging.
deflectometry OMEGA EP phase-contrast imaging Talbot–Lau X-ray interferometry 
High Power Laser Science and Engineering
2023, 11(4): 04000e49
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 中科聚研(吉林)干细胞科技有限公司,吉林 吉林 132000
在显微成像领域中,高成像质量图像的获取与良好的照明方式息息相关。传统显微镜使用聚光透镜来提供均匀强度的照明,调节聚光透镜的光阑匹配不同放大倍率的物镜。然而无色生物细胞的光学吸收系数低,在传统显微镜下难以观测到其细节信息。为了突破传统显微镜的成像功能,本文设计了一种可调控的显微镜聚光镜模块,通过将小型扭曲液晶器件嵌入聚光透镜的后焦面处,调控液晶器件的对光的透过效果可以实现明场成像以及差分相衬成像。系统由一款商用显微镜改装而成,液晶器件尺寸为22 mm×18 mm,实现了系统的高度集成化。通过实验验证了系统的成像性能,实现了对微凸透镜样品的定量相位重建,实验与理论曲线的互相关系数达到0.994 9,并且通过胚胎干细胞的重建展示了系统在实际应用中的效果。
显微镜 计算成像 差分相衬成像 microscopy computational imaging differential phase contrast imaging 
液晶与显示
2023, 38(4): 456
Author Affiliations
Abstract
The most recent discoveries in the biochemical field are highlighting the increasingly important role of lipid droplets (LDs) in several regulatory mechanisms in living cells. LDs are dynamic organelles and therefore their complete characterization in terms of number, size, spatial positioning and relative distribution in the cell volume can shed light on the roles played by LDs. Until now, fluorescence microscopy and transmission electron microscopy are assessed as the gold standard methods for identifying LDs due to their high sensitivity and specificity. However, such methods generally only provide 2D assays and partial measurements. Furthermore, both can be destructive and with low productivity, thus limiting analysis of large cell numbers in a sample. Here we demonstrate for the first time the capability of 3D visualization and the full LD characterization in high-throughput with a tomographic phase-contrast flow-cytometer, by using ovarian cancer cells and monocyte cell lines as models. A strategy for retrieving significant parameters on spatial correlations and LD 3D positioning inside each cell volume is reported. The information gathered by this new method could allow more in depth understanding and lead to new discoveries on how LDs are correlated to cellular functions.The most recent discoveries in the biochemical field are highlighting the increasingly important role of lipid droplets (LDs) in several regulatory mechanisms in living cells. LDs are dynamic organelles and therefore their complete characterization in terms of number, size, spatial positioning and relative distribution in the cell volume can shed light on the roles played by LDs. Until now, fluorescence microscopy and transmission electron microscopy are assessed as the gold standard methods for identifying LDs due to their high sensitivity and specificity. However, such methods generally only provide 2D assays and partial measurements. Furthermore, both can be destructive and with low productivity, thus limiting analysis of large cell numbers in a sample. Here we demonstrate for the first time the capability of 3D visualization and the full LD characterization in high-throughput with a tomographic phase-contrast flow-cytometer, by using ovarian cancer cells and monocyte cell lines as models. A strategy for retrieving significant parameters on spatial correlations and LD 3D positioning inside each cell volume is reported. The information gathered by this new method could allow more in depth understanding and lead to new discoveries on how LDs are correlated to cellular functions.
lipid droplets label-free phase-contrast imaging in-flow tomography 3D imaging 
Opto-Electronic Advances
2023, 6(1): 220048
作者单位
摘要
1 新疆医科大学 公共卫生学院,乌鲁木齐 830011
2 新疆医科大学 医学工程技术学院,乌鲁木齐 830011
激光散斑对比成像(LSCI)是一种以宽视场方式监测血流速度的非扫描光学成像技术。LSCI技术具有高时间-空间分辨率、快速实时成像、非接触式、仪器结构简单、无需造影剂等优势。本文简要介绍了LSCI的基本原理,概述了反射式LSCI和透射式LSCI两种结构,综述了LSCI在皮肤血流、大脑皮层和视网膜血流等生物医学应用中的最新研究进展,并对其发展前景做了进一步展望,为血流监测提供理论依据和实践指导。
激光散斑对比成像 组织灌注 血流速度 血流监测 血流微循环 laser speckle contrast imaging tissue perfusion blood flow velocity blood flow monitoring blood microcirculation 
激光生物学报
2023, 32(1): 8
作者单位
摘要
深圳大学 物理与光电工程学院 光电子器件与系统教育部/广东省重点实验室,深圳 518060
目前针对双相位光栅干涉仪灵敏度的分析存在着灵敏度模型不合理、理论结果不完整等问题,制约着系统灵敏度的提高。对此,提出了新的灵敏度模型,即物体所产生的条纹移动与光源位置变化产生的条纹移动是等效的。该灵敏度模型将物体对X射线的折射作用转化成了光源的移动,同时巧妙地利用了系统的劳条件将光源移动与成像条纹移动联系起来。利用新的灵敏度模型,成功获取了双相位光栅干涉仪和Talbot-Lau干涉仪的灵敏度,为优化系统灵敏度提供了理论指导。
X射线相衬成像 Talbot-Lau干涉仪 双相位光栅干涉仪 灵敏度 劳条件 X-ray phase-contrast imaging Talbot-Lau interferometer Dual phase grating interferometer Sensitivity Lau condition 
光子学报
2023, 52(1): 0105001
Author Affiliations
Abstract
1 Photonics Laboratory, Department of Physics, Dankook University, Cheonan 31116, Republic of Korea
2 Center for Basic Science Research at DKU, Dankook University, Cheonan 31116, Republic of Korea
Non-interferometric X-ray quantitative phase imaging (XQPI), much simpler than the interferometric scheme, has provided high-resolution and reliable phase-contrast images. We report on implementing the volumetric XQPI images using concurrent-bidirectional scanning of the orthogonal plane on the optical axis of the Foucault differential filter; we then extracted data in conjunction with the transport-intensity equation. The volumetric image of the laminate microstructure of the gills of a fish was successfully reconstructed to demonstrate our XQPI method. The method can perform 3D rendering without any rotational motion for laterally extended objects by manipulating incoherent X-rays using the pinhole array.
X-ray imaging phase contrast imaging Foucault differential filter transport-intensity equation 
Chinese Optics Letters
2023, 21(1): 013401
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Physics and Optoelectronic Engineering, , Shenzhen 518060, China
2 College of Electronics and Information Engineering, , Shenzhen 518060, China
Applying an ultrafast vortex laser as the pump, optical parametric amplification can be used for spiral phase-contrast imaging with high gain, wide spatial bandwidth, and high imaging contrast. Our experiments show that this design has realized the 1064 nm spiral phase-contrast idler imaging of biological tissues (frog egg cells and onion epidermis) with a spatial resolution at several microns level and a superior imaging contrast to both the traditional bright- or dark-field imaging under a weak illumination of 7 nW/cm2. This work provides a powerful way for biological tissue imaging in the second near-infrared region.
optical parametric amplification ultrafast vortex laser pulse spatial resolution phase-contrast imaging 
Chinese Optics Letters
2022, 20(10): 100003
Author Affiliations
Abstract
1 Hubei Key Laboratory of Optical Information and Pattern Recognition and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
2 Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology Wuhan, Hubei 430074, P. R. China
Reduced nicotinamide adenine dinucleotide (NADH) plays a crucial role in many biochemical reactions in human metabolism. In this work, a flow-mediated skin fluorescence (FMSF)-postocclusion reactive hyperaemia (PORH) system was developed for noninvasive and in vivo measurement of NADH fluorescence and its real-time dynamical changes in human skin tissue. The real-time dynamical changes of NADH fluorescence were analyzed with the changes of skin blood flow measured by laser speckle contrast imaging (LSCI) experiments simultaneously with FMSFPORH measurements, which suggests that the dynamical changes of NADH fluorescence would be mainly correlated with the intrinsic changes of NADH level in the skin tissue. In addition, Monte Carlo simulations were applied to understand the impact of optical property changes on the dynamical changes of NADH fluorescence during the PORH process, which further supports that the dynamical changes of NADH fluorescence measured in our system would be intrinsic changes of NADH level in the skin tissue.
Reduced nicotinamide adenine dinucleotide (NADH) fluorescence laser speckle contrast imaging (LSCI) Monte Carlo simulation dynamical change 
Journal of Innovative Optical Health Sciences
2022, 15(3): 2230006
张天宇 1,2,3王钢 1,2,*张熙 1,2窦江培 1,2
作者单位
摘要
1 中国科学院 国家天文台 南京天文光学技术研究所, 南京210042
2 中国科学院 天文光学技术重点实验室(南京天文光学技术研究所), 南京210042
3 中国科学院大学, 北京100049
限制自适应光学(Adaptive Optics, AO)系统表现的一个关键因素是由波前传感器所在路径和科学成像路径之间差异引起的非共光路像差(Non-Common Path Aberration,NCPA),同时AO系统共光路部分也会不可避免地引入静态像差。为此,本文提出了一种基于焦面点扩散函数(Point Spread Function,PSF)复制的技术,用于校正AO系统中的静态像差。此技术利用点光源产生的PSF图像作为参考图像,通过迭代优化算法控制可变形镜改变其面型,将参考PSF图像复制到AO系统科学成像路径。实验结果表明,校正后的斯特列尔比(Strehl Ratio,SR)从初始的0.312提高到0.995。此技术可以稳定、快速地获得全局校正结果,特别是在系统具有较大的初始静态像差时。
自适应光学 像差校正 高对比度成像 adaptive optics aberration correction high-contrast imaging 
中国光学
2022, 15(3): 545

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!