作者单位
摘要
1 潍坊学院 物理与光电工程学院, 山东 潍坊
2 光电信息控制和安全技术重点实验室, 天津
首先综述了气体波导激光器、空芯光纤气体激光器和固态波导激光器的发展史, 然后分别介绍两类激光器的工作原理, 最后根据两类激光器的发展现状对未来的研究进行了展望和分析。
气体波导激光器 空芯光纤气体激光器 固态波导激光器 gas waveguide laser hollow-core optical fiber gas lasers solid-state waveguide laser waveguide laser 
光电技术应用
2022, 28(6): 28
周智越 1,2崔宇龙 1,2黄威 1,2李昊 1,2[ ... ]王泽锋 1,2,3,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
基于空芯光纤(HCF)的气体激光器是实现中红外激光输出的一种有效手段,一般情况下,跃迁选择定则决定一条泵浦吸收谱线对应两条激射跃迁谱线。通过气压控制的方法实现了单一谱线的4.3 μm单程结构HCF HBr激光器。以自研的1958 nm连续波高功率窄线宽掺铥光纤放大器为泵浦源,泵浦一段5 m长、充低压HBr气体的反共振HCF,通过气压控制分别实现了同位素H 79Br和H 81Br单一谱线4.3 μm的激光输出,最大激光功率为350 mW,总的光光转换效率约为8%。利用自行搭建的光纤扫描装置测量了输出激光光斑,结果表明其是一种基模。
激光器 光纤激光器 分子气体激光器 空芯光纤 
光学学报
2022, 42(5): 0514005
王泽锋 1,2,3,*周智越 1崔宇龙 1黄威 1[ ... ]李昊 1
作者单位
摘要
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
粒子数反转和受激拉曼散射是实现光纤气体激光器输出的最常见的两种基本原理。与光纤气体拉曼激光光源不同,基于粒子数反转原理的光纤气体激光器是通过气体分子振转能级的本征吸收跃迁实现激光输出。由于绝大多数气体分子的振转能级对应的激射跃迁谱线都在中红外波段,这种激光器的输出波长基本都在中红外波段。简要分析了基于粒子数反转原理的光纤气体激光器在产生中红外波段激光方面的优势,重点回顾了其发展历史与研究现状,并对下一步的发展趋势进行了展望。
激光器 红外和远红外激光器 分子气体激光器 空芯光纤 
中国激光
2021, 48(4): 0401009
王泽锋 1,2,3,*黄威 1,2李智贤 1,2周智越 1,2[ ... ]李昊 1,3
作者单位
摘要
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
空芯光纤为光与气体的相互作用提供了理想的环境,极大增强了气体的受激拉曼散射,大大降低了拉曼阈值。基于充气空芯光纤的光纤气体拉曼激光光源获得了快速发展,已经实现了从紫外到中红外波段的激光输出。简要介绍了光纤气体拉曼激光光源的基本原理和空芯光纤的发展概况,详细综述了光纤气体拉曼激光光源的研究进展,并对其发展的趋势进行了展望。
激光光学 光纤激光 拉曼散射 拉曼激光 气体激光 空芯光纤 
中国激光
2021, 48(4): 0401008
周智越 1,2,3李昊 1,2,3崔宇龙 1,2,3黄威 1,2,3王泽锋 1,2,3,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
报道了一种基于空芯光纤的光泵浦中红外HBr气体激光器。用一台可调谐的窄线宽2 μm连续波掺铥光纤放大器泵浦一段充低压HBr气体的4.4 m反共振空芯光纤,通过将种子激光的波长精确调谐到HBr(同位素H 79Br)气体R(2)吸收线1971.7 nm附近,使得处于振动基态 v0的H 79Br分子跃迁至振动激发态v2,并在振动态v2v1之间形成粒子数反转,通过跃迁选择定律同时激射出两条谱线R(2)和P(4),波长分别为3977.2 nm和4165.3 nm。当HBr气压为6.2 mbar时,4 μm激光最大输出功率为125 mW,相对于耦合进空芯光纤的泵浦光功率转换效率约为10%。通过进一步改善空芯光纤的传输损耗谱,提高泵浦光耦合效率,可大幅提升激光效率和输出功率,并且利用HBr分子的能级特性,将来有望实现大范围调谐的中红外激光输出。
激光器 光纤激光器 气体分子激光器 空芯光纤 
光学学报
2020, 40(16): 1614001
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
4 Luoyang Electronic Equipment Test Center of China, Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology, Luoyang 471003, China
We report here on a diode-pumped pulsed mid-infrared laser source based on gas-filled hollow-core fibers (HCFs) towards an all-fiber structure by the tapering method. The pump laser is coupled into an acetylene-filled HCF through a tapered single-mode fiber. By precisely tuning the wavelength of the diode to match different absorption lines of acetylene near 1.5 μm, mid-infrared emission around 3.1–3.2 μm is generated. With 2 m HCFs and 3 mbar acetylene gas, a maximum average power of 130 mW is obtained with a laser slope efficiency of ~24%. This work provides a potential scheme for all-fiber mid-infrared fiber gas lasers.
140.3070 Infrared and far-infrared lasers 140.3510 Lasers, fiber 140.4130 Molecular gas lasers 
Chinese Optics Letters
2019, 17(9): 091402
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
We report here a single-pass 1.56 μm fiber gas Raman laser in a deuterium-filled hollow-core fiber and a 2.86 μm cascade fiber gas Raman laser with methane in the second stage. The maximum output powers at 1.56 and 2.86 μm are 27 and 8.5 mW with Raman conversion efficiency of 30% and 42%, respectively. The results offer a new method to produce a 1.5 μm fiber source and prove the potential of the cascade fiber gas Raman laser in extending the available wavelength.
140.3280 Laser amplifiers 140.3510 Lasers, fiber 140.3550 Lasers, Raman 140.4130 Molecular gas lasers 
Chinese Optics Letters
2019, 17(7): 071406
作者单位
摘要
西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
基于粒子图像测速(PIV)技术,测量了闭合循环脉冲XeF(C-A)蓝绿准分子激光器增益区的流场。研究了放电区域内流场中心区、近激光窗口区和过渡区在未放电条件下定常流场的流速特征及放电后不同时刻的流场形态,分析了放电后流场的恢复时间与风机转动频率、放电电压的关系。结果表明:在近窗口区域,存在流速缓慢的涡流;在流场中心区,流速较大且分布均匀;放电后瞬态出现了流速极慢的流场停滞现象。
测量 气体激光器 流场 流速 
中国激光
2019, 46(2): 0204007
Author Affiliations
Abstract
1 Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Sodium-ethane excimer pairs are studied and proved to be a great choice of excimer pumped sodium laser (XPNaL) gain media. The lifetime of the sodium D2 line is studied in a sodium-ethane excimer system excited by a 553 nm laser, and the observed phenomenon of lifetime lengthening is discussed. Amplified spontaneous emission (ASE) of the sodium D2 line is successfully obtained, and its time-resolved and spectroscopic characteristics are studied experimentally. According to the intensity of the ASE signal under different sodium vapor atom densities, the sodium D2 line gain feature of sodium-ethane excimer pairs excited by the 553 nm laser is concluded.
140.1340 Atomic gas lasers 140.2180 Excimer lasers 
Chinese Optics Letters
2017, 15(11): 111401
严强 1,2,*孔维鹏 1,2王度 1,2秦瑀 1,2[ ... ]周逊 1,2
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心,四川 成都 610041
2 中国工程物理研究院 太赫兹研究中心, 四川 绵阳 621900
针对紧凑型光泵气体太赫兹激光器(OPTL)技术, 设计并研制了全金属波导结构的气体太赫兹(THz)激光器原理样机.THz激光器工作介质为CH3OH气体, 最佳工作气压30 Pa, 在波长9.69 μm、连续功率44 W的9P(36)支 CO2激光泵浦下, 实验测得在2.52 THz频点输出功率150 mW, 光子转换效率为8.4%.研究THz激光输出功率与CH3OH工作气压、泵浦光功率的关系、以及THz激光输出稳定性, 并通过压电陶瓷对THz激光腔长进行精密调节, 同时测量输出功率的变化情况, 讨论了金属波导THz激光器的纵模特性.实验工作与结果为下一步紧凑型折叠波导腔全金属OPTL的研制提供了参考.
太赫兹 光泵气体THz激光器 高功率连续THz激光 金属波导 terahertz optically-pumped terahertz gas lasers high power cw THz laser metallic waveguide 
红外与毫米波学报
2017, 36(1): 65

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!