作者单位
摘要
1 哈尔滨工业大学材料结构精密焊接与连接全国重点实验室,黑龙江 哈尔滨 150001
2 北京遥感设备研究所,北京 100854
因瓦合金以其独特的因瓦效应被应用于航天用精密光学镜筒制造中。对因瓦合金镜筒激光选区增材制造工艺及其结构设计进行了探究与优化,结果表明:增加激光扫描间距同时适当降低扫描速度可以有效减少匙孔与未熔合等缺陷,得到了显微组织均匀分布且无明显缺陷的样件,其抗拉强度为482 MPa,屈服强度为388 MPa,最终获得了高质量的镜筒结构件。将镜筒结构拓扑优化为斜拉筋式结构并进行去应力热处理后,其内部残余应力仅为屈服应力的13%,且热膨胀系数仅为1.9×10-6 K-1
增材制造 激光选区熔化 因瓦合金 工艺优化 结构设计及后处理 
中国激光
2024, 51(10): 1002314
作者单位
摘要
1 中国科学院金属研究所师昌绪先进材料创新中心,辽宁 沈阳 110016
2 中国科学技术大学材料科学与工程学院,辽宁 沈阳 110016
激光选区熔化GH4169合金粉末的循环使用可以显著降低制备成本、缩短生产周期。但是,利用循环使用的合金粉末,通过激光选区熔化技术成形的部件在组织、缺陷、性能行为上均存在差异。研究了不同循环使用次数下GH4169合金粉末的组织、缺陷及粒径分布等特征对成形件热处理态组织和相分布、拉伸行为及变形机制的影响。分析了循环使用后的粉末形貌和粒径分布、热处理试样的断口形貌、断口纵剖面组织和断口附近透射组织特征,详细阐述了拉伸断裂方式和强韧化机制。结果表明:粉末多次循环使用后平均粒径由30.45 μm逐渐增大至41.80 μm;表面愈加粗糙,流动性由14.85 s/50 g增加到18.62 s/50 g,较差的流动性导致热处理试样出现孔洞缺陷;合金拉伸强度(50~100 MPa)下降,力学性能受损;而断裂方式和变形机制不受影响。热处理态合金析出了纳米尺寸的块状碳化物、短棒状δ相、Laves相以及γ″和γ′强化相,拉伸过程中有效的钉扎位错提升了合金性能,使合金在室温和650 ℃下的最大抗拉强度分别达到1430 MPa和1205 MPa,优于或接近已报道的锻造、铸造和增材制造GH4169合金。研究结果为激光选区熔化GH4169合金的粉末循环使用和拉伸变形机制分析提供了参考。
增材制造 激光选区熔化 GH4169合金 粉末特性 组织演变 拉伸行为 
中国激光
2024, 51(10): 1002310
作者单位
摘要
1 上海交通大学材料科学与工程学院,上海 200240
2 首都航天机械有限公司,北京 100076
3 宜宾上交大新材料研究中心,四川 宜宾 644000
NbMoTaW难熔高熵合金(RHEA)在超高温下表现出优异的力学性能,但其室温脆性限制了其在航空航天等领域中的应用。采用激光选区熔化技术制备了(NbMoTaW)100-xCx和NbMoTaWTix两种难熔高熵合金(x%为原子数分数),通过合金化的方法提高了NbMoTaW合金的室温脆性抗性。研究表明,原子数分数为0.5%的C的加入显著提高了NbMoTaW合金的成形性和室温力学性能,使(NbMoTaW)99.5C0.5合金的屈服强度、极限抗压强度和塑性分别提高到1695 MPa、1751 MPa和6.9%;随着Ti含量的增加,NbMoTaWTix合金的强度和塑性也同时提高,并通过激光选区熔化制备了尺寸为100 mm×80 mm×20 mm的NbMoTaW难熔高熵合金超高声速飞行器关键部件模拟件,为增材制造高强韧的NbMoTaW系难熔高熵合金提供了一种新的研究思路。
激光技术 难熔高熵合金 激光选区熔化 合金化 显微组织 力学性能 
中国激光
2024, 51(10): 1002309
冯恩昊 1陈蓉 2,3邸士雄 4周占伟 5[ ... ]林鑫 2,3
作者单位
摘要
1 西安高压电器研究院股份有限公司,陕西 西安 710077
2 凝固技术国家重点实验室,陕西 西安 710072
3 金属高性能增材制造与创新设计工业和信息化部重点实验室,陕西 西安 710072
4 中国航发湖南动力机械研究所,湖南 株洲 412002
5 北京卫星制造厂有限公司,北京 100094
6 巴黎高科国立高等工艺技术学院MSMP实验室,法国巴黎 51000
激光增材制造过程中的快速冷却,导致成形零件一般具有较高的残余应力与亚稳态结构。因此,优化热处理工艺对提高成形零件的使用性能至关重要。研究了选区激光熔化(SLM)TC4钛合金经不同热处理(退火、固溶、固溶时效)后的显微组织演化规律及拉伸性能特征。在实验过程中,首先对致密度优良的SLM TC4钛合金进行了不同制度的热处理,再分别对不同状态的样块进行宏观和微观结构、力学性能及断口组织的表征。实验结果表明,沉积态的SLM TC4钛合金显微组织主要为粗大的β相柱状晶,柱状晶内部为大量的、细小的α′相针状马氏体和α相板条间少量的β相颗粒。退火态α′相针状马氏体分解,重新形核长大为α相和β相。固溶态α相发生粗化后呈短棒状。固溶时效处理样品时,其显微组织为呈弥散分布的较均匀的(α+β)相,其中α相粗化为板条状,β相分布在α相周围。沉积态SLM TC4钛合金的强度最大,延伸率最低。沉积态和热处理态SLM TC4钛合金均没有织构。沉积态SLM TC4钛合金的抗拉强度为1238.75 MPa、屈服强度为1080.00 MPa、断后延伸率为8.85%。综合分析得到,三种热处理态SLM TC4钛合金的抗拉强度、屈服强度均有所下降,而断后延伸率有所提高。SLM TC4钛合金分别经过三种热处理后,其断裂方式从沉积态的韧性-脆性混合断裂转变为韧性断裂。
激光技术 热处理 TC4合金 选区激光熔化 微观组织 力学性能 
中国激光
2024, 51(10): 1002321
张思远 1,2张友昭 2李相伟 2,*张涛 1,**[ ... ]张书彦 2
作者单位
摘要
1 广州大学物理与材料科学学院,广东 广州 511442
2 东莞材料基因高等理工研究院,广东 东莞 523808
采用激光选区熔化(SLM)技术在H13模具钢顶部沉积了一种新型3D打印模具钢材料AM40,通过扫描电镜(SEM)和电子背散射衍射(EBSD)等方法,研究了热处理对AM40/H13双金属结构材料微观组织演变及其力学变形行为的影响。结果表明:沉积态AM40/H13双金属材料界面无裂纹缺陷,AM40侧呈现增材制造特有的Marangoni熔池特征,以及细小的胞状和柱状结构的马氏体组织,H13侧为粗大奥氏体组织,界面存在明显的组织不均匀性。经过1000 ℃淬火+560 ℃回火热处理后,熔池特征消失,H13侧形成均匀的板条马氏体,消除了界面晶粒尺寸和取向差的不均匀性,且界面处的元素扩散宽度增加60 μm。沉积态AM40/H13界面硬度为642 HV,高于AM40(529 HV)和H13(202 HV)。热处理消除了AM40/H13硬度的不均匀性,使整体平均硬度为480 HV。热处理后,AM40/H13双金属的抗拉强度从沉积态的644 MPa提高到1436 MPa,强度介于AM40和H13之间,断裂位置从沉积态的H13侧变为AM40侧,界面保持较高的强度和塑性。
激光技术 激光选区熔化 双金属结构 热处理 连接界面 微观组织 拉伸性能 
中国激光
2024, 51(16): 1602304
黄宏康 1,3罗霞 1,*戴玉宏 2,3何鑫 1[ ... ]范舟 1
作者单位
摘要
1 西南石油大学新能源与材料学院,四川 成都 610500
2 华南理工大学国家金属材料近净成形工程技术研究中心,广东 广州 510640
3 成都新杉宇航科技有限公司,四川 成都 610500
钛基复合材料具有高弹性模量、高比强度、高耐磨性和优异的高温耐久性等特点,在航空航天领域有良好的应用前景。采用低能球磨制备了纳米TiC颗粒与TC4的复合粉体,然后使用选区激光熔化(SLM)制备了TiC/TC4钛基复合材料,分析了不同体能量密度(29~97 J/mm3)对复合材料成形质量、显微组织、显微硬度的影响,并总结了组织演变机理和TiC演变过程。结果表明,成形该复合材料的最佳体能量密度为50~70 J/mm3,在该范围内试样的最高相对密度可达99.7%,显微硬度为385~392 HV。横截面上,显微组织的晶粒呈特殊的双尺寸分布,即由初生β等轴晶和沿其外围生长的不规则共晶区组成;纵截面上,显微组织呈鱼鳞状形貌分布且熔池内存在大量流纹状组织。复合材料中存在未溶TiC(主要分布于初生β晶界附近)、共晶TiC(主要呈链状网络分布于共晶β晶界)以及沉淀析出TiC(主要呈颗粒状分布于晶粒内)。随着体能量密度的增加,链状共晶TiC向棒状转变,晶内TiC尺寸长大。共晶TiC与β-Ti没有取向关系,共晶TiC、沉淀析出TiC与α'-Ti均存在明显取向关系,即{11-20}α'-Ti∥{110}TiC。
激光技术 钛基复合材料 选区激光熔化 显微组织演变 TiC演变 
中国激光
2024, 51(16): 1602301
作者单位
摘要
1 南昌航空大学轻合金加工科学与技术国防重点学科实验室,江西 南昌 330063
2 南昌航空大学工程训练中心,江西 南昌 330063
3 江西宝航新材料有限公司,江西 南昌 330200
采用激光选区熔化成形了Inconel 625合金试样,研究了激光功率和扫描速度对合金孔隙的影响,制备了存在大尺寸圆形孔隙缺陷(key-hole模式下)、小尺寸圆形孔隙缺陷(conduction模式下)和不规则孔隙缺陷的拉伸试样,通过815 ℃高温拉伸试验探讨了孔隙类型对合金抗拉强度及塑性的影响。结果表明:孔隙类型对合金815 ℃高温抗拉强度及塑性有较大影响。其中,不规则孔隙缺陷试样的高温抗拉强度为374 MPa,塑性为5%;大尺寸圆形孔隙缺陷试样的高温抗拉强度为364 MPa,塑性为31%;小尺寸圆形孔隙缺陷试样的高温抗拉强度为363 MPa,塑性为37%。当不规则孔隙向小尺寸圆形孔隙转变时,高温抗拉强度约降低3%;当大尺寸圆形孔隙向小尺寸圆形孔隙转变时,高温塑性约提升19%。在各类815 ℃高温拉伸试样断口纵截面中均发现了大量的沿晶界扩展的高温失塑裂纹,这是合金失塑的主要原因。孔隙缺陷处的位错塞积造成较大的应力集中,阻挡了位错滑移和合金的塑性变形,使合金更易发生断裂。
激光技术 激光选区熔化 Inconel 625合金 孔隙缺陷 高温失塑行为 
中国激光
2024, 51(10): 1002323
作者单位
摘要
1 航空工业沈阳飞机工业(集团)有限公司工艺研究所,辽宁 沈阳 110850
2 大连理工大学高性能精密制造全国重点实验室,辽宁 大连 116024
GH3536高温合金具有优异的耐腐蚀性和高温强度,常用于燃烧室和燃气轮机等高温零部件的制造。增减材复合制造(ASHM)技术综合了增材成形灵活性高和减材表面质量好的优势,是制造高性能GH3536零件的有效途径。由于ASHM采用增材和减材交替进行的方式,因此确定最优的增材工艺参数,选择合适的刀具类型对提高GH3536零件的制造质量具有重要意义。利用激光选区熔化制备了增材试样,检测了试样的相对致密度以获得GH3536的最优增材成形参数。利用扫描电子显微镜和电子背散射衍射对最优增材成形参数下加工的GH3536的微观结构进行了观察。开展了GH3536的ASHM实验,研究了球头刀、圆鼻刀、平面铣刀三种不同类型刀具对试样减材加工表面质量的影响。结果表明:当激光功率为400 W、扫描速度为1750 mm/s时,增材试样无明显缺陷,相对致密度达到99.93%,是增材成形的最优参数;采用圆鼻刀加工的GH3536表面粗糙度可达0.211 μm。本研究可为GH3536零件的ASHM参数和刀具类型确定提供指导和参考。
GH3536高温合金 增减材复合制造 激光选区熔化 刀具类型 表面形貌 
激光与光电子学进展
2024, 61(9): 0914001
向超 1,2,*张涛 1吴文伟 3邹志航 1[ ... ]韩恩厚 1,4,**
作者单位
摘要
1 广东腐蚀科学与技术创新研究院,广东 广州 510530
2 中国科学院金属研究所,辽宁 沈阳 110016
3 广州大学物理与材料科学学院,广东 广州 510006
4 华南理工大学材料科学与工程学院,广东 广州 510641
使用电子万能材料试验机对不同热处理后的18Ni300马氏体时效钢进行拉伸试验,并通过X射线衍射(XRD)分析了不同热处理后马氏体及奥氏体的含量,研究了18Ni300钢在不同热处理过程中的组织演变、力学性能以及二者的关系,对比了其在不同热处理后的综合力学性能,从而筛选出了最佳热处理工艺。结果表明,热处理后试样的熔道逐渐消失,马氏体组织特征更加明显,硬度从34.1 HRC上升到52~54 HRC,抗拉强度从1174 MPa上升到2000 MPa以上。490 ℃直接时效6 h后实现了较好的强韧组合,这与组织内生成的强韧化相(逆转奥氏体)的含量密切相关。XRD测试结果表明,490 ℃直接时效后,试样内部具有最高的逆转奥氏体含量(体积分数约为6.9%),这些细小的逆转奥氏体分布在马氏体边界和内部,在一定程度上改善了18Ni300钢的韧性。
激光技术 激光选区熔化 18Ni300马氏体时效钢 逆转奥氏体 热处理 拉伸性能 
中国激光
2024, 51(16): 1602302
姚曙光 1,2,*董云辉 1,2,**李湘龙 3谢旻翰 1,2
作者单位
摘要
1 中南大学轨道交通安全教育部重点实验室,湖南 长沙 410075
2 中南大学交通运输工程学院,湖南 长沙 410075
3 中南大学粉末冶金国家重点实验室,湖南 长沙 410083
激光选区熔化(SLM)过程工艺参数会直接影响熔道成形形貌及微观结构,从而影响成形结构的力学性能。针对AlSi10Mg合金在SLM成形过程中产生的缺陷,笔者采用试验方法研究了激光功率、扫描速度等成形参数对AlSi10Mg合金单、双熔道成形形貌的影响,并结合离散元-流体体积(DEM-VOF)法建立了介观尺度下SLM成形过程粉末床数值模拟模型,对低功率下熔道成形缺陷的成因进行研究。结果发现:激光线能量密度不足(线能量密度低于200 J/m)以及AlSi10Mg的易氧化性会严重影响熔道的连续性;在低扫描速率(200 mm/s)、高线能量密度(500 J/m)成形窗口下,熔池的连续性及表面平整度因受蒸气反冲压力的作用而降低,同时形成了深度可达100 μm的匙孔,影响了熔道形貌,并产生了孔隙缺陷。由数值模拟结果可知,提高预热温度至500 K可以降低粉末熔化所需的激光线能量密度,从而改善低功率下的熔道不连续现象。
激光技术 激光选区熔化 AlSi10Mg合金 工艺参数 缺陷 数值模拟 
中国激光
2024, 51(16): 1602307

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!