张兰强 1,2,3曾意 1,2,3吴小虎 4杨金生 1,2[ ... ]饶长辉 1,2,3,*
作者单位
摘要
1 自适应光学全国重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
4 山东高等技术研究院,山东 济南 250100
Overview: Gravitational waves are spacetime oscillations radiated outward by accelerating mass objects. Significant astronomical events in the universe, such as the merging of massive black holes, emit stronger gravitational waves. Detecting gravitational waves allows for a deeper study of the laws governing celestial bodies and the origins of the universe, making accurate detection crucial. Gravitational wave detection technology utilizes Michelson interferometers to convert the extremely faint spacetime fluctuations caused by gravitational waves into measurable changes in optical path length. Recently, ground-based large Michelson interferometers have achieved direct detection of high-frequency gravitational waves. However, the detection of low-frequency gravitational waves, which is equally important, is not feasible on the ground due to arm length and ground noise issues. This necessitates the construction of ultra-large Michelson interferometers in space for low-frequency gravitational wave detection. Spaceborne gravitational wave detection telescopes play a vital role in collimating bidirectional beams in ultra-long interferometric optical paths in space. The extremely subtle changes in optical path caused by gravitational waves impose high demands for pm-level optical path length stability and below 10?10 level backscattered light in these telescopes. The ultra-high level index requirements exceed the precision limits of current ground testing techniques for telescopes. To ensure that spaceborne telescopes maintain their ultra-high design performance in the orbital environment, developing testing and evaluation techniques for these key indicators is a crucial prerequisite for the success of the space gravitational wave detection program. This paper provides an overview of the development of spaceborne gravitational wave detection telescopes, both domestically and internationally. It focuses on the current status and some test results of optical path length stability and backscattered light testing of telescopes under development, as well as further testing plans, providing a reference for the testing and evaluation of Chinese space gravitational wave detection space-borne telescopes.
空间引力波探测 星载望远镜 地面测试 光程稳定性 后向杂散光 space gravitational wave detection spaceborne telescope ground test optical path length stability backscattered light 
光电工程
2024, 51(2): 240027
宋奇林 1,2,3,4李杨 1,3,4周子夜 1,3,4肖亚维 1,2,3,4[ ... ]饶长辉 1,2,3,4
作者单位
摘要
1 自适应光学全国重点实验室,四川 成都 610209
2 中国科学院大学,北京 100049
3 中国科学院光电技术研究所,四川 成都 610209
4 中国科学院自适应光学重点实验室,四川 成都 610209
Overview: Since the groundbreaking discovery of gravitational waves, the scientific community has fervently pursued the exploration of low-frequency gravitational waves to glean deeper insights into the cosmos. The inherent limitations of ground-based conditions, however, pose formidable challenges for detectors in capturing gravitational waves below the 1 Hz threshold. Consequently, the imperative has shifted toward the deployment of space-based gravitational wave detectors as the paramount solution for effective low-frequency gravitational wave detection. At the crux of space-based gravitational wave detection lies the pivotal role of spaceborne telescopes. Given the expansive transmission distances spanning magnitudes of 109 m between celestial constellations, the demand for nanoradian-level precision in telescope pointing accuracy becomes non-negotiable. The concomitant necessity for high-precision measurements and calibration emerges as a prerequisite for achieving the exacting standards of pointing accuracy in spaceborne telescopes dedicated to gravitational wave detection. To ameliorate the deleterious effects of pointing deviations on gravitational wave detection, this study strategically optimizes key parameters, including microlens structures, detector selection, and algorithmic frameworks, thereby achieving a breakthrough in high-precision pointing deviation measurements. Leveraging a low-density microlens array with extended sub-aperture focal lengths enhances the spatial scale of the light spot within each sub-aperture. This, coupled with detectors boasting a high signal-to-noise ratio, synergistically elevates the pointing detection accuracy of each discrete lens. Moreover, the paper introduces an innovative, Hartmann principle-based methodology for high-precision pointing deviation measurements, deploying a spatially reused paradigm across multiple sub-apertures. By aggregating measurement results from diverse sub-apertures, the approach effectively mitigates the influence of assorted random errors on measurement accuracy, thereby markedly enhancing the precision of pointing deviation measurements. Illustrating the efficacy of these methodologies, the paper exemplifies their application within the ambit of the "Tianqin Plan" for space-based gravitational wave detection. Employing numerical simulations and factoring in the design parameters of the Hartmann sensor, the study performs a meticulous analysis of pointing deviation measurement accuracy. Comparative analysis between single sub-aperture and sub-aperture correlation reuse technologies reveals a compelling enhancement in measurement accuracy, approximating a sevenfold improvement with the latter. The pointing deviation measurement accuracy achieved through sub-aperture correlation reuse technology is quantified at approximately 18.81 nanoradians. Considering the optical magnification inherent in spaceborne telescopes, estimated at around 30 times, the resultant pointing deviation measurement accuracy reaches an impressive 0.62 nanoradians. This design precision significantly surpasses the stipulated 1 nanoradian accuracy requirement for ground-based gravitational wave pointing deviation measurements. As a prudential measure, the proposed design incorporates a substantial margin to accommodate potential accuracy diminution attributable to external perturbations during empirical testing.
星载望远镜 指向偏差测量 哈特曼 多子孔径空间复用 spaceborne telescope pointing deviation measurement Hartmann multi-subaperture spatial multiplexing 
光电工程
2024, 51(2): 230234
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 中国科学院西安光学精密机械研究所,陕西 西安 710119
The empirical findings from this study confirm the superiority of reinforcement learning in formulating effective stray light suppression measures for space gravitational wave detection telescope systems. The approach not only achieves superior suppression outcomes but also introduces an efficient, flexible, and innovative solution to the challenges of stray light in space gravitational wave detection and other high-precision optical systems.
引力波 星载望远镜 杂光抑制 强化学习 gravitational wave spaceborne telescope stray light suppression reinforcement learning 
光电工程
2024, 51(2): 230210
康佳慧 1,2郜海阳 1,2,*廖淑君 3寇蕾蕾 1,2[ ... ]卜令兵 1,2
作者单位
摘要
1 南京信息工程大学中国气象局气溶胶与云降水重点开放实验室,江苏 南京 210044
2 南京信息工程大学大气物理学院,江苏 南京 210044
3 青海省气象台,青海 西宁 810012
4 上海卫星工程研究所,上海 200240
星载测风激光雷达具有高精度、高垂直分辨率、全球覆盖等特点,是获取全球风场的有效手段。聚焦于米散射通道测风模式,对冰云与气溶胶同时存在的较复杂场景实施星载激光雷达测风的仿真模拟。基于菲佐干涉仪的测风原理构建了一套包含6个子模块的正演模型,以大气激光多普勒雷达(ALADIN)仪器参数作为输入值,模拟了典型场景下的探测信号,并结合反演分析了测风精度水平。结果发现,云层和气溶胶的回波能够增强探测器获取信号的信噪比,从而提升反演精度,将风速误差控制在±1.2 m/s范围内;但当云层冰水含量较大时,由于衰减作用使得云层下方信噪比削弱,从而增大反演风速误差,部分区域甚至无法实施有效探测。另外,在采用重心法反演风速时,可通过增加累积电荷耦合器件(ACCD)探测器通道数来减小风速振荡误差。上述研究可为设计和改进星载测风技术提供参考。
遥感 星载激光雷达 主动遥感 菲佐干涉仪 仿真模拟 非相干测风 
中国激光
2023, 50(23): 2310002
作者单位
摘要
1 中国科学院西安光学精密机械研究所 光谱成像技术重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
3 航天东方红卫星有限公司,北京 100094
星载测风干涉仪采用临边观测模式测量大气气辉谱线的多普勒频移来实现大气风场探测,干涉仪有效覆盖性会受到探测目标源及卫星平台模式的限制,在卫星任务规划前端对观测数据进行分析,判断其是否满足科学目标,对风场数据应用具有重要意义。首先,建立了临边观测几何模型,对卫星运行期间仪器的临边切点分布情况进行仿真;其次,探讨了影响仪器有效观测的主要因素,并以昼气辉探测为例,分析在不同时段下,太阳入射角与干涉仪有效时空覆盖性之间的关系;最后使用分离变量法研究卫星轨道参数对测风干涉仪有效覆盖性的影响,并评估不同轨道参数下的干涉仪对欧亚大陆的覆盖百分比。结果表明:1)影响仪器有效观测的因素主要为太阳天顶角和太阳散射角,太阳入射角影响切点纬度覆盖范围和切点地方时;2)卫星轨道倾角和轨道高度共同决定仪器有效覆盖效率,且轨道倾角为欧亚大陆覆盖百分比的主要影响因素,当轨道倾角在60°~80°之间时,覆盖百分比可达到百分百。文中为星载干涉仪的后续设计及性能评估提供了观测几何框架,实现了载荷观测覆盖效能的定量分析,且该模型具备泛用于其他各类大气光学遥感载荷观测模式分析的能力。
星载测风干涉仪 临边观测 数据有效性 覆盖性 覆盖百分比 spaceborne wind interferometer limb observation data validity coverage coverage percentage 
红外与激光工程
2023, 52(10): 20230106
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 国科大杭州高等研究院基础物理与数学科学学院, 浙江 杭州 310024
在空间引力波探测的超长臂干涉测量过程中,杂散光问题长期以来受到广泛关注。一方面,本地干涉仪发出的激光通过望远镜时会产生后向相干杂散光。另一方面,在轨情况下,来自空间的环境辐射入射到航天器还会产生前向非相干杂散光。一直以来,前向非相干杂散光受到的关注较少,然而却是空间引力波望远镜设计必须要考虑的因素。因此,本文对空间引力波探测望远镜在轨情况下产生的杂散光进行测量与抑制。首先,根据太极计划三星卫星编队的轨道数据对全年太阳角进行计算,对1064 nm波段附近的太阳辐射进行评估,推导了遮光罩投影函数,最终给出遮光罩设计指标。然后,对望远镜进行光学与机械建模,并对关键光学元件进行散射测量。最后,根据入射太阳光能量对到达望远镜出瞳的杂散光进行计算。结果表明:当入射光与光轴夹角为60°时,出瞳处的杂散辐射可达到3.9×10−12 W,对应点源透射比为8.7×10−9,满足空间引力波探测超低杂散光的需求。
空间引力波探测 杂散光 散射光学 spaceborne gravitational wave detection optical scattering stray light 
中国光学
2023, 16(5): 1081
王静松 1,3刘东 1,2,*
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031
2 先进激光技术安徽省实验室,安徽 合肥 230037
3 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
卫星遥感能够获取全球范围的大气环境参数,主要包括主动和被动两类探测技术。星载激光雷达作为典型的主动光学遥感载荷可以用于探测全球大气气溶胶、云、大气风场和温室气体等,并可以反演垂直廓线信息。本文概述了星载激光雷达探测技术的发展历程,较为全面地总结了星载激光雷达载荷轨道及技术参数,并与被动光学遥感载荷进行了比较,探讨了主被动星载大气探测载荷各自的优劣势和未来发展趋势。通过对比分析,为未来不同应用场景的大气探测载荷选择提供参考,有助于更好地利用卫星数据反演全球大气参数。
星载激光雷达 主被动遥感 光学载荷 大气环境参数 大气探测 
光学学报
2023, 43(18): 1899902
胡建波 1,2王雄 1,3赵少华 4王中挺 4[ ... ]陈卫标 2,5,8,**
作者单位
摘要
1 中国科学院上海光学精密机械研究所航天激光工程部,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 华中科技大学光学与电子信息学院,湖北 武汉 430074
4 生态环境部卫星环境应用中心,北京 100094
5 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室,上海 201800
6 中国海洋大学信息科学与工程学部海洋技术学院,山东 青岛 266100
7 浙江大学光电科学与工程学院,浙江 杭州 310027
8 崂山实验室,山东 青岛 266237
为实现对全球气溶胶光学参数剖面的高精度测量,采用基于碘分子滤波器的高光谱分辨率探测技术。结合欧洲中期天气预报中心(ECMWF)的大气再分析数据集(ERA5)的温度和压强数据,选取在轨期间途经撒哈拉沙漠和加拿大山火区域的星载高光谱分辨率激光雷达(HSRL)的观测数据,对沙尘类气溶胶和烟尘类气溶胶的光学特性进行分析,包括气溶胶的后向散射系数、消光系数、退偏振比和雷达比。结果表明:撒哈拉沙漠地区近地面5 km以内的气溶胶分布主要以沙尘类气溶胶为主,其退偏振比集中在0.2~0.4,雷达比数值集中在40~60 sr;加拿大山火地区的气溶胶主要以烟尘类气溶胶为主,其退偏振比集中在0.02~0.15,雷达比在50~70 sr范围。激光雷达特有的高光谱探测技术,在气溶胶和云的精细化探测和分类方面具有重要应用,将在环境监测中发挥重要作用。
大气气溶胶  气溶胶光学参数 星载激光雷达 高光谱分辨率探测技术 
光学学报
2023, 43(18): 1899901
作者单位
摘要
1 中国科学院上海技术物理研究所 中国科学院智能红外感知重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 国科大杭州高等研究院,浙江 杭州 310024
随着航天红外技术向高定量化、高集成化方向的发展,传统基于CPU或DSP的黑体测控温系统无法满足高集成化和高精度的需要。针对上述问题,设计了基于FPGA的星载黑体高精度集成温控系统。该系统以FPGA为核心控制单元进行温度采集和控制,实现多功能高速并行处理。黑体测温模块采用三线制惠斯通电桥减小导线电阻影响,然后在信号调理部分采用集成运算放大器组成的三级有源滤波和放大实现了对电气输出的低噪声放大。与传统仪用放大器加无源滤波的信号调理方式相比,该方法具有更强的干扰抑制能力。同时,对铂电阻阻值与温度的非线性误差以及测温系统电路误差,提出了基于多项式模型及最小二乘理论的分级拟合校正方法,进一步提高了测温精度。控温模块采用新型模糊控制和增量式PID(FIPID)结合减小过冲,加快收敛速度。基于精密标准电阻的实测结果表明该系统测温精度在247~375 K范围内为0.035 K,比校正前精度0.383 K提高了90.9%。控温仿真实验表明与PID控温相比,FIPID的过冲为零,而PID算法有12.4%的过冲,且收敛速度提高了64%。地面热真空和在轨实际控温实验表明在256~367 K范围内实测控温精度为0.039 K,该方法已成功应用于某型号空间红外相机,且满足在轨高精度定标要求。该系统具有测控温精度高、动态范围大、易于集成化的优点,可推广应用于星上其他高精度主动温控。
星载黑体 集成化设计 FPGA 高精度测控温 模糊增量PID spaceborne blackbody integrated design FPGA high-precision temperature measurement and control fuzzy incremental PID 
红外与激光工程
2023, 52(7): 20220852
万渊 1,3陈菡 2杜嘉旻 2孟洁 1[ ... ]陈卫标 1,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所航天激光工程部,上海 201800
2 上海卫星工程研究所,上海 201109
3 中国科学院大学材料与光电研究中心,北京 100049
为了满足星载大气探测激光雷达在轨应用需求,对该系统采用的空间大能量脉冲固体激光器进行了空间环境下的热控设计仿真及试验研究。首先根据激光载荷整体布局以及轨道特性参数分析并计算了激光器外部空间热环境,随后介绍了激光器构型及热设计,然后利用热传导以及空间热辐射理论建立了热分析模型,开展了激光器在轨热设计及仿真,并通过空间热真空环境试验验证了热控方案。激光器在轨工作温度波动优于±0.033 ℃,激光器内部关键器件大功率的激光放大器模块温度低于28 ℃,实现了大能量脉冲固体激光器在轨超高精度控温,满足了激光器在轨稳定运行工作的使用要求,为激光雷达在轨正常工作提供了重要保障。
激光器 星载激光雷达 空间激光器 热设计 传导辐射制冷 
中国激光
2023, 50(14): 1401005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!