Advanced Photonics, 2021, 3 (1): 016001, Published Online: Dec. 15, 2020  

Ultrawideband chromatic aberration-free meta-mirrors Download: 883次

Author Affiliations
1 Zhejiang University, College of Information Science and Electronic Engineering, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
2 Air Force Engineering University, Air and Missile Defend College, Xi’an, China
3 Zhejiang University, ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Hangzhou, China
4 Ningbo University, Department of Physics, Faculty of Science, Ningbo, China
Abstract
Chromatic aberration-free meta-devices (e.g., achromatic meta-devices and abnormal chromatic meta-devices) play an essential role in modern science and technology. However, current efforts suffer the issues of low efficiency, narrow operating band, and limited wavefront manipulation capability. We propose a general strategy to design chromatic aberration-free meta-devices with high-efficiency and ultrabroadband properties, which is realized by satisfying the key criteria of desirable phase dispersion and high reflection amplitudes at the target frequency interval. The phase dispersion is tuned successfully based on a multiresonant Lorentz model, and high reflection is guaranteed by the presence of the metallic ground. As proof of the concept, two microwave meta-devices are designed, fabricated, and experimentally characterized. An achromatic meta-mirror is proposed within 8 to 12 GHz, and another abnormal chromatic meta-mirror can tune the reflection angle as a linear function. Both meta-mirrors exhibit very high efficiencies (85% to 94% in the frequency band). Our findings open a door to realize chromatic aberration-free meta-devices with high efficiency and wideband properties and stimulate the realizations of chromatic aberration-free meta-devices with other functionalities or working at higher frequency.

Tong Cai, Shiwei Tang, Bin Zheng, Guangming Wang, Wenye Ji, Chao Qian, Zuojia Wang, Erping Li, Hongsheng Chen. Ultrawideband chromatic aberration-free meta-mirrors[J]. Advanced Photonics, 2021, 3(1): 016001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!