Frontiers of Optoelectronics, 2016, 9 (2): 283, 网络出版: 2016-10-21  

Dual-periodic-microstructure-induced color tunable white organic light-emitting devices

Dual-periodic-microstructure-induced color tunable white organic light-emitting devices
作者单位
1 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2 College of Physics, Jilin University, Changchun 130023, China
摘要
In this paper, we demonstrate a color tunable white organic light-emitting devices (WOLEDs) based on the two complementary color strategies by introducing two-dimensional (2-D) dual periodic gratings. It is possible to tune the color in a range between cold-white and warmwhite by simply operating the polarization of polarizer in front of the microstructured WOLEDs. Experimental and numerical results demonstrate that color tunability of the WOLEDs comes from the effect of the 2-D dual periodic gratings by exciting the surface plasmon-polariton (SPP) resonance associated with the cathode/organic interface. The electroluminescence (EL) performance of the WOLEDs have also been improved due to the effective light extraction by excitation and out-coupling of the SPP modes, and a 39.65% enhancement of current efficiency has been obtained compared to the conventional planar devices.
Abstract
In this paper, we demonstrate a color tunable white organic light-emitting devices (WOLEDs) based on the two complementary color strategies by introducing two-dimensional (2-D) dual periodic gratings. It is possible to tune the color in a range between cold-white and warmwhite by simply operating the polarization of polarizer in front of the microstructured WOLEDs. Experimental and numerical results demonstrate that color tunability of the WOLEDs comes from the effect of the 2-D dual periodic gratings by exciting the surface plasmon-polariton (SPP) resonance associated with the cathode/organic interface. The electroluminescence (EL) performance of the WOLEDs have also been improved due to the effective light extraction by excitation and out-coupling of the SPP modes, and a 39.65% enhancement of current efficiency has been obtained compared to the conventional planar devices.

Yangang BI, Jinhai JI, Yang CHEN, Yushan LIU, Xulin ZHANG, Yunfei LI, Ming XU, Yuefeng LIU, Xiaochi HAN, Qiang GAO, Hongbo SUN. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices[J]. Frontiers of Optoelectronics, 2016, 9(2): 283. Yangang BI, Jinhai JI, Yang CHEN, Yushan LIU, Xulin ZHANG, Yunfei LI, Ming XU, Yuefeng LIU, Xiaochi HAN, Qiang GAO, Hongbo SUN. Dual-periodic-microstructure-induced color tunable white organic light-emitting devices[J]. Frontiers of Optoelectronics, 2016, 9(2): 283.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!