Matter and Radiation at Extremes, 2016, 1 (1): 82, Published Online: May. 9, 2017  

Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas

Author Affiliations
1 Department of Physics, University of Texas, Austin, TX, 78712, USA
2 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
3 Fakultat fur Physik, Ludwig-Maximilians-University, Munich, Germany
Abstract
The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities with plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the Glass Hybrid OPCPA Scaled Test-bed (GHOST) laser system at University of Texas, Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying direct laser acceleration (DLA) <参考文献原文>as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, Maxwellian spectra observed in earlier experiments <参考文献原文>This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.

T. Toncian, C. Wang, E. McCary, A. Meadows, A.V. Arefiev, J. Blakeney, K. Serratto, D. Kuk, C. Chester, R. Roycroft, L. Gao, H. Fu, X.Q. Yan, J. Schreiber, I. Pomerantz, A. Bernstein, H. Quevedo, G. Dyer, T. Ditmire, B.M. Hegelich. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas[J]. Matter and Radiation at Extremes, 2016, 1(1): 82.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!