Matter and Radiation at Extremes, 2016, 1 (6): 277, Published Online: May. 9, 2017  

Ion stopping in dense plasmas: A basic physics approach

Author Affiliations
Laboratoire de Physique des Gaz et Plasmas, CNRS, Univ-Paris Sud, Universite Paris-Saclay, 91405 Orsay, France
Abstract
We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion (ICF) driven by intense and heavy ion beams, and also for warm dense matter (WDM). First, we put emphasis on every possible mechanism involved in the shaping of the ion projectile effective charge, while losing energy in a target plasma with classical ions and partially degenerate electrons. Then, we switch to ion stopping by target bound electrons, taking detailed account of mean excitation energies. Free electron stopping has already been given a lot of attention in former works [C. Deutsch et al., Recent Res. Devel. Plasma 1 (2000) 1-23; Open Plasma Phys. J. 3 (2010) 88-115]. Then, we extend the usual standard stopping model (SSM) framework to nonlinear stopping including a treatment of the Z3 Barkas effect and a confronting comparison of Bloch and Bohr Coulomb logarithms. Finally, we document low velocity ion slowing down (LVISD) in single ion plasmas as well as in binary ionic mixtures (BIM), in connection with specific ICF fuels.

Claude Deutsch, Gilles Maynard. Ion stopping in dense plasmas: A basic physics approach[J]. Matter and Radiation at Extremes, 2016, 1(6): 277.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!