Photonic Sensors, 2017, 7 (2): 148–156, 网络出版: 2017-05-09  

Electromagnetic Resonant Properties of Metal-Dielectric-Metal (MDM) Cylindrical Microcavities

Electromagnetic Resonant Properties of Metal-Dielectric-Metal (MDM) Cylindrical Microcavities
作者单位
1 Center for Analysis and Testing, Nanjing Normal University, Nanjing, 210097, China
2 Department of Neurosurgery, Nanjing Drum Tower Hospital, Nanjing, 210008, China
3 The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
摘要
Optical metamaterials can concentrate light into extremely tiny volumes to enhance their interaction with quantum objects. In this paper, a cylindrical microcavity based on the Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical microcavity has the strong ability of localizing light and confining 103- – 104-fold enhancement of the electromagnetic energy density, which contains the most energy of the incoming light. The enhancement factor of energy density G inside the cavity shows the regularities as the change in the thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and with the absorption efficiency C (C=1–Rmin), which can reach 99% by optimizing the structure’s geometry parameters, and the dielectric constant. Due to the symmetry of the cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, new plasmonic detectors, bio-sensing, solar cells, etc.
Abstract
Optical metamaterials can concentrate light into extremely tiny volumes to enhance their interaction with quantum objects. In this paper, a cylindrical microcavity based on the Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical microcavity has the strong ability of localizing light and confining 103- – 104-fold enhancement of the electromagnetic energy density, which contains the most energy of the incoming light. The enhancement factor of energy density G inside the cavity shows the regularities as the change in the thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from 4.8 μm to 6 μm and with the absorption efficiency C (C=1–Rmin), which can reach 99% by optimizing the structure’s geometry parameters, and the dielectric constant. Due to the symmetry of the cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, new plasmonic detectors, bio-sensing, solar cells, etc.

Hang HENG, Rong WANG. Electromagnetic Resonant Properties of Metal-Dielectric-Metal (MDM) Cylindrical Microcavities[J]. Photonic Sensors, 2017, 7(2): 148–156. Hang HENG1, Rong WANG. Electromagnetic Resonant Properties of Metal-Dielectric-Metal (MDM) Cylindrical Microcavities[J]. Photonic Sensors, 2017, 7(2): 148–156.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!