首页 > 论文 > Matter and Radiation at Extremes > 2卷 > 3期(pp:117-128)

In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions

In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

Recent advances in experimental techniques and data processing allow in situ determination of mineral crystal structure and chemistry up to Mbar pressures in a laser-heated diamond anvil cell (DAC), providing the fundamental information of the mineralogical constitution of our Earth's interior. this work highlights several recent breakthroughs in the field of high-pressure mineral crystallography, including the stability of bridgmanite, the single-crystal structure studies of post-perovskite and H-phase as well as the identification of hydrous minerals and iron oxides in the deep lower mantle. the future development of high-pressure crystallography is also discussed.

Abstract

Recent advances in experimental techniques and data processing allow in situ determination of mineral crystal structure and chemistry up to Mbar pressures in a laser-heated diamond anvil cell (DAC), providing the fundamental information of the mineralogical constitution of our Earth's interior. this work highlights several recent breakthroughs in the field of high-pressure mineral crystallography, including the stability of bridgmanite, the single-crystal structure studies of post-perovskite and H-phase as well as the identification of hydrous minerals and iron oxides in the deep lower mantle. the future development of high-pressure crystallography is also discussed.

投稿润色
补充资料

DOI:10.1016/j.mre.2017.01.002

所属栏目:Review Articles

基金项目:the authors acknowledge the support from the Foundation of President of China Academy of Engineering Physics (Grant No: 201402032) and National Natural Science Foundation of China (Grant No: 41574080 and U1530402).

收稿日期:2016-10-10

修改稿日期:2016-12-29

网络出版日期:--

作者单位    点击查看

Hongsheng Yuan:Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, PR China
Li Zhang:Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, PR China

联系人作者:Hongsheng Yuan(hongsheng.yuan@hpstar.ac.cn)

【1】A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter. 25 (4) (1981) 297-356.

【2】W.F. McDonough, S.S. Sun, the composition of the Earth, Chem. Geol. 120 (3-4) (1995) 223-253.

【3】L. Zhang, Y. Meng, P. Dera, W. Yang, W.L. Ma, et al., Single-crystal structure determination of (Mg, Fe) SiO3 postperovskite, Proc. Natl. Acad. Sci. 110 (16) (2013) 6292-6295.

【4】L. Zhang, Y. Meng, W. Yang, L. Wang, W.L. Mao, et al., Disproportionation of (Mg, Fe) SiO3 perovskite in Earth''s deep lower mantle, Science 344 (6186) (2014) 877-882.

【5】R.D. van der Hilst, M.V. de Hoop, P. Wang, S.H. Shim, P. Ma, et al., Seismostratigraphy and thermal structure of Earth''s core-mantle boundary region, Science 315 (5820) (2007) 1813-1817.

【6】K. Hirose, Postperovskite phase transition and its geophysical implications, Rev. Geophys. 44 (3) (2006) RG3001.

【7】S.H. Shim, the postperovskite transition, Annu. Rev. Earth Planet. Sci. 36 (12) (2008) 569-599.

【8】I. Sidorin, M. Gurnis, D.V. Helmberger, Discontinuity at the base of the mantle, Science 286 (5443) (1999) 1326-1331.

【9】M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi, Post-perovskite phase transition in MgSiO3, Science 304 (5672) (2004) 855-858.

【10】S.-H. Shim, T. Lay, Post-perovskite at ten, Nat. Geosci. 7 (9) (2014) 621-623.

【11】A.R. Oganov, S. Ono, theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth''s D'' layer, Nature 430 (6998) (2004) 445-448.

【12】T. Tsuchiya, J. Tsuchiya, K. Umemoto, R.M. Wentzcovitch, Phase transition in MgSiO3 perovskite in the earth''s lower mantle, Earth Planet. Sci. Lett. 224 (3e4) (2004) 241-248.

【13】D.R. Hummer, Y. Fei, Synthesis and crystal chemistry of Fe3th-bearing (Mg,Fe3+ )(Si,Fe3+ )O3 perovskite, Am. Mineral. 97 (11-12) (2012) 1915-1921.

【14】T.B. Ballaran, A. Kurnosov, K. Glazyrin, D.J. Frost, M. Merlini, et al., Effect of chemistry on the compressibility of silicate perovskite in the lower mantle, Earth Planet. Sci. Lett. 333-334 (2012) 181-190.

【15】J.-F. Lin, Z. Mao, J. Yang, J. Liu, Y. Xiao, et al., High-spin Fe2th and Fe3th in single-crystal aluminous bridgmanite in the lower mantle, Geophys. Res. Lett. 43 (13) (2016), 2016GL069836.

【16】M. Dorfman Susannah, J. Badro, P. Rueff, P. Chow, Y. Xiao, et al., Composition dependence of spin transition in (Mg,Fe)SiO3 bridgmanite, Am. Mineral. 100 (2015) 2246.

【17】T. Okuchi, N. Purevjav, N. Tomioka, J.-F. Lin, T. Kuribayashi, et al., Synthesis of large and homogeneous single crystals of water-bearing minerals by slow cooling at deep-mantle pressures, Am. Mineral. 100 (2015) 1483.

【18】L. Ismailova, E. Bykova, M. Bykov, V. Cerantola, C. McCammon, et al., Stability of Fe, Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite, Sci. Adv. 2 (7) (2016) e1600427.

【19】W.L. Mao, H.k. Mao, V.B. Prakapenka, J. Shu, R.J. Hemley, the effect of pressure on the structure and volume of ferromagnesian post-perovskite, Geophys. Res. Lett. 33 (12) (2006).

【20】S.R. Shieh, T.S. Duffy, A. Kubo, G. Shen, V.B. Prakapenka, et al., Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene, Proc. Natl. Acad. Sci. U.S.A. 103 (9) (2006) 3039-3043.

【21】S.-H. Shim, K. Catalli, J. Hustoft, A. Kubo, V.B. Prakapenka, et al., Crystal structure and thermoelastic properties of (Mg0.91Fe0.09)SiO3 postperovskite up to 135 GPa and 2,700 K, Proc. Natl. Acad. Sci. 105 (21) (2008) 7382-7386.

【22】T. Lay, E.J. Garnero, Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure, in: Post-Perovskite: the Last Mantle Phase Transition, American Geophysical Union, 2013, pp. 129-153.

【23】T. Lay, Sharpness of the D” discontinuity beneath the Cocos Plate: implications for the perovskite to post-perovskite phase transition, Geophys. Res. Lett. 35 (3) (2008) L03304.

【24】M.E. Wysession, T. Lay, J. Revenaugh, Q. Williams, E.J. Garnero, et al., the D” discontinuity and its implications, in: the Core-Mantle Boundary Region, American Geophysical Union, 2013, pp. 273-297.

【25】K. Catalli, S.-H. Shim, V. Prakapenka, thickness and Clapeyron slope of the post-perovskite boundary, Nature 462 (7274) (2009) 782-785.

【26】W.L. Mao, Y. Meng, G. Shen, V.B. Prakapenka, A.J. Campbell, et al., Iron-rich silicates in the Earth''s D” layer, Proc. Natl. Acad. Sci. U. S. A. 102 (28) (2005) 9751-9753.

【27】W.L. Mao, H.-K. Mao, W. Sturhahn, J. Zhao, V.B. Prakapenka, et al., Iron-rich post-perovskite and the origin of ultralow-velocity zones, Science 312 (5773) (2006) 564-565.

【28】T. Yamanaka, K. Hirose, W.L. Mao, Y. Meng, P. Ganesh, et al., Crystal structures of (Mg1-x, Fex) SiO3 postperovskite at high pressures, Proc. Natl. Acad. Sci. 109 (4) (2012) 1035-1040.

【29】H.O. S?rensen, S. Schmidt, J.P. Wright, G. Vaughan, S. Techert, et al., Multigrain crystallography, Z. fu¨r Kristallogr. Cryst. Mater. 227 (1) (2012) 63-78.

【30】Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, et al., Toward an internally consistent pressure scale, Proc. Natl. Acad. Sci. 104 (22) (2007) 9182-9186.

【31】A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94 GPa, Phys. Rev. B 70 (9) (2004) 094112.

【32】S. Schmidt, GrainSpotter: a fast and robust polycrystalline indexing algorithm, J. Appl. Crystallogr. 47 (1) (2014) 276-284.

【33】P. Dera, GSE-ADA Data Analysis Program for Monochromatic Single Crystal Diffraction with Area Detector, GeoSoilEnviroCARS, Argonne, Illinois, 2007.

【34】G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A Found. Crystallogr. 64 (1) (2008) 112-122.

【35】Y. Fei, H.K. Mao, B.O. Mysen, Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature, J. Geophys. Res. Solid Earth 96 (B2) (1991) 2157-2169.

【36】J. Li, V.V. Struzhkin, H.-K. Mao, J. Shu, R.J. Hemley, et al., Electronic spin state of iron in lower mantle perovskite, Proc. Natl. Acad. Sci. U. S. A. 101 (39) (2004) 14027-14030.

【37】M. Jackson Jennifer, W. Sturhahn, G. Shen, J. Zhao, Y. Hu Michael, et al., A synchrotron M€ossbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa, Am. Mineral. 90 (2005) 199.

【38】T. Irifune, M. Isshiki, S. Sakamoto, Transmission electron microscope observation of the high-pressure form of magnesite retrieved from laser heated diamond anvil cell, Earth Planet. Sci.Lett. 239 (1e2) (2005) 98-105.

【39】A.-L. Auzende, J. Badro, F.J. Ryerson, P.K. Weber, S.J. Fallon, et al., Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry, Earth Planet. Sci. Lett. 269 (1e2) (2008) 164-174.

【40】M. Miyahara, T. Sakai, E. Ohtani, Y. Kobayashi, S. Kamada, et al., Application of FIB system to ultra-high-pressure Earth science, J. Mineral. Petrol. Sci. 103 (2) (2008) 88-93.

【41】A. Ricolleau, G. Fiquet, A. Addad, N. Menguy, C. Vanni, et al., Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature, Am. Mineral. 93 (2008) 144.

【42】E. Ohtani, Hydrous minerals and the storage of water in the deep mantle, Chem. Geol. 418 (2015) 6-15.

【43】D. Pearson, F. Brenker, F. Nestola, J. McNeill, L. Nasdala, et al., Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature 507 (7491) (2014) 221-224.

【44】R. Van der Hilst, S. Widiyantoro, E. Engdahl, Evidence for deep mantle circulation from global tomography, Nature 386 (1997) 578-584.

【45】A. Ringwood, A. Major, High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O, Earth Planet. Sci. Lett. 2 (2) (1967) 130-133.

【46】L.-g. Liu, Effects of H2O on the phase behaviour of the forsteriteenstatite system at high pressures and temperatures and implications for the Earth, Phys. Earth Planet. Inter. 49 (1-2) (1987) 142-167.

【47】M. Nishi, T. Irifune, J. Tsuchiya, Y. Tange, Y. Nishihara, et al., Stability of hydrous silicate at high pressures and water transport to the deep lower mantle, Nat. Geosci. 7 (3) (2014) 224-227.

【48】E. Ohtani, Y. Amaike, S. Kamada, T. Sakamaki, N. Hirao, Stability of hydrous phase H MgSiO4H2 under lower mantle conditions, Geophys. Res. Lett. 41 (23) (2014) 8283-8287.

【49】I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, et al., Stability of a hydrous d-phase, AlOOHeMgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle, Earth Planet. Sci. Lett. 401 (2014) 12-17.

【50】M.G. Pamato, R. Myhill, T.B. Ballaran, D.J. Frost, F. Heidelbach, et al., Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate, Nat. Geosci. 8 (1) (2015) 75-79.

【51】J. Tsuchiya, First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle, Geophys. Res. Lett. 40 (17) (2013) 4570-4573.

【52】K. Komatsu, A. Sano-Furukawa, H. Kagi, Effects of Mg and Si ions on the symmetry of d-AlOOH, Phys. Chem. Miner. 38 (9) (2011) 727-733.

【53】T. Kuribayashi, A. Sano-Furukawa, T. Nagase, Observation of pressureinduced phase transition of d-AlOOH by using single-crystal synchrotron X-ray diffraction method, Phys. Chem. Miner. 41 (4) (2014) 303-312.

【54】J. Tsuchiya, T. Tsuchiya, S. Tsuneyuki, T. Yamanaka, First principles calculation of a high-pressure hydrous phase, d-AlOOH, Geophys. Res. Lett. 29 (19) (2002) 1909.

【55】W.R. Panero, L.P. Stixrude, Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in d-AlOOH, Earth Planet. Sci. Lett. 221 (1e4) (2004) 421-431.

【56】S. Li, R. Ahuja, B. Johansson, the elastic and optical properties of the high-pressure hydrous phase d-AlOOH, Solid State Commun. 137 (1e2) (2006) 101-106.

【57】X. Xue, M. Kanzaki, H. Fukui, E. Ito, T. Hashimoto, Cation order and hydrogen bonding of high-pressure phases in the Al2O3-SiO2-H2O system: an NMR and Raman study, Am. Mineral. 91 (2006) 850.

【58】E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Stability field of new hydrous phase, d-AlOOH, with implications for water transport into the deep mantle, Geophys. Res. Lett. 28 (20) (2001) 3991-3993.

【59】E. Ohtani, K. Litasov, T. Hosoya, T. Kubo, T. Kondo,Water transport into the deep mantle and formation of a hydrous transition zone, Phys. Earth Planet. Inter. 143 (2004) 255-269.

【60】C. McCammon, the paradox of mantle redox, Science 308 (5723) (2005) 807-808.

【61】C. McCammon, Perovskite as a possible sink for ferric iron in the lower mantle, Nature 387 (6634) (1997) 694-696.

【62】C. McCammon, M. Hutchison, J. Harris, Ferric iron content of mineral inclusions in diamonds from Sao Luiz: a view into the lower mantle, Science 278 (5337) (1997) 434-436.

【63】D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Tronnes, et al., Experimental evidence for the existence of iron-rich metal in the Earth''s lower mantle, Nature 428 (6981) (2004) 409-412.

【64】L. Dubrovinsky, T. Boffa-Ballaran, K. Glazyrin, A. Kurnosov, D. Frost, et al., Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees, High Press. Res. 30 (4) (2010) 620-633.

【65】B. Lavina, P. Dera, E. Kim, Y. Meng, R.T. Downs, et al., Discovery of the recoverable high-pressure iron oxide Fe4O5, Proc. Natl. Acad. Sci. 108 (42) (2011) 17281-17285.

【66】B. Lavina, Y. Meng, Synthesis of Fe5O6, Sci. Adv. 1 (5) (2015) e1400260.

【67】M. Merlini, M. Hanfland, A. Salamat, S. Petitgirard, H. Mu¨ller, the crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions, Am. Mineral. 100 (8-9) (2015) 2001-2004.

【68】Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, et al., FeO2 and FeOOH under deep lower-mantle conditions and Earth''s oxygenehydrogen cycles, Nature 534 (7606) (2016) 241-244.

【69】L. Zhang, Y. Meng, H.-K. Mao, Unit cell determination of coexisting post-perovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa, Prog. Earth Planet. Sci. 3 (1) (2016) 1-6.

【70】S. Ono, T. Kikegawa, Y. Ohishi, Equation of state of CaIrO3-type MgSiO3 up to 144 GPa, Am. Mineral. 91 (2006) 475.

引用该论文

Hongsheng Yuan,Li Zhang. In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions[J]. Matter and Radiation at Extremes, 2017, 2(3): 117-128

Hongsheng Yuan,Li Zhang. In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions[J]. Matter and Radiation at Extremes, 2017, 2(3): 117-128

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF