发光学报, 2017, 38 (8): 1028, 网络出版: 2017-08-30   

ZnS∶Cu-罗丹明B的荧光共振能量转移性质

Properties of Fluorescence Resonance Energy Transfer of ZnS∶Cu-Rhodamine B
作者单位
1 长春理工大学 理学院, 吉林 长春130022
2 长春理工大学 国际教育与交流学院, 吉林 长春130022
摘要
为了解决现有的基于量子点荧光共振能量转移体系的生物毒性问题, 选用无毒的ZnS∶Cu量子点与罗丹明B构建新型荧光共振能量转移体系。通过共沉淀法成功制备了形貌均一的ZnS∶Cu纳米晶量子点。在此基础上, 测试了不同掺杂浓度的ZnS∶Cu量子点及罗丹明B的荧光光谱。然后, 通过对ZnS∶Cu量子点的表面修饰构建了以ZnS∶Cu量子点为供体、罗丹明B为受体的荧光共振能量转移体系。实验结果表明: ZnS∶2%Cu量子点的发光光谱与罗丹明B的吸收光谱在481 nm处有较大重合, 说明构建荧光共振能量转移的最佳铜掺杂摩尔分数为2%。通过计算发现以ZnS∶2%Cu量子点为供体、罗丹明B为受体的荧光共振能量转移体系的能量转移效率为25.8%。进一步实验结果表明, 罗丹明B浓度也能够影响能量转移。
Abstract
In order to solve the biological toxicity of fluorescence resonance energy transfer (FRET) system based on quantum dots, non-toxic ZnS∶Cu quantum dots and Rhodamine B were chosen to construct FRET system. ZnS∶Cu nanocrystalline quantum dots with good morphology were successfully prepared by precipitation method. On this basis, the fluorescence spectra of ZnS∶Cu quantum dots with different concentration of copper and fluorescence spectra of Rhodamine B were tested. Then, FRET system with ZnS∶Cu quantum dots as donor and Rhodamine B as acceptor was successfully constructed by the surface modification. Experimental results indicate that the emission spectrum of ZnS∶2%Cu matches the excitation spectrum of Rhodamine B most in 481 nm. So the optimum copper doping mole fraction for the construction of FRET system is 2%. The energy transfer efficiency of ZnS∶Cu quantum dots as donor and Rhodamine B as acceptor is 25.8%. Further experimental results indicate that the concentration of Rhodamine B also can affect the energy transfer.

翟英歌, 楚学影, 徐铭泽, 李金华, 金芳军, 王晓华. ZnS∶Cu-罗丹明B的荧光共振能量转移性质[J]. 发光学报, 2017, 38(8): 1028. ZHAI Ying-ge, CHU Xue-ying, XU Ming-ze, LI Jin-hua, JIN Fang-jun, WANG Xiao-hua. Properties of Fluorescence Resonance Energy Transfer of ZnS∶Cu-Rhodamine B[J]. Chinese Journal of Luminescence, 2017, 38(8): 1028.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!