Photonics Research, 2017, 5 (6): 06000702, Published Online: Dec. 7, 2017   

High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform Download: 813次

Author Affiliations
1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
2 Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
3 e-mail: liny0075@e.ntu.edu.sg
4 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Abstract
In this paper, normal incidence vertical p-i-n photodetectors on a germanium-on-insulator (GOI) platform were demonstrated. The vertical p-i-n structure was realized by ion-implanting boron and arsenic at the bottom and top of the Ge layer, respectively, during the GOI fabrication. Abrupt doping profiles were verified in the transferred high-quality Ge layer. The photodetectors exhibit a dark current density of ~47 mA/cm2 at ?1 V and an optical responsivity of 0.39 A/W at 1550 nm, which are improved compared with state-of-the-art demonstrated GOI photodetectors. An internal quantum efficiency of ~97% indicates excellent carrier collection efficiency of the device. The photodetectors with mesa diameter of 60 μm exhibit a 3 dB bandwidth of ~1 GHz, which agrees well with theoretical calculations. The bandwidth is expected to improve to ~32 GHz with mesa diameter of 10 μm. This work could be similarly extended to GOI platforms with other intermediate layers and potentially enrich the functional diversity of GOI for near-infrared sensing and communication integrated with Ge CMOS and mid-infrared photonics.

Yiding Lin, Kwang Hong Lee, Shuyu Bao, Xin Guo, Hong Wang, Jurgen Michel, Chuan Seng Tan. High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform[J]. Photonics Research, 2017, 5(6): 06000702.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!