Photonics Research, 2017, 5 (6): 06000B39, Published Online: Dec. 7, 2017  

Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power [Invited] Download: 544次

Author Affiliations
1 Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
2 Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
Abstract
For a fully chaotic two-dimensional (2D) microcavity laser, we present a theory that guarantees both the existence of a stable single-mode lasing state and the nonexistence of a stable multimode lasing state, under the assumptions that the cavity size is much larger than the wavelength and the external pumping power is sufficiently large. It is theoretically shown that these universal spectral characteristics arise from the synergistic effect of two different kinds of nonlinearities: deformation of the cavity shape and mode interaction due to a lasing medium. Our theory is based on the linear stability analysis of stationary states for the Maxwell–Bloch equations and accounts for single-mode lasing phenomena observed in real and numerical experiments of fully chaotic 2D microcavity lasers.

Takahisa Harayama, Satoshi Sunada, Susumu Shinohara. Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power [Invited][J]. Photonics Research, 2017, 5(6): 06000B39.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!