首页 > 论文 > 中国光学 > 10卷 > 6期(pp:726-736)

范围限制的自适应亮度保持多阈值直方图均衡算法研究

Range limited adaptive brightness preserving multi-threshold histogram equalization algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对目前直方图均衡算法难以实现, 且易造成亮度饱和等问题, 本文提出了一种范围限制的自适应亮度保持多阈值直方图均衡算法。首先, 对输入图像进行适当平滑, 从而获得它的直方图峰值点个数(N+1)。然后, 对Otsu算法进行N阈值扩展, 并通过这种方法获得图像的N个分割阈值, 从而按照此阈值对图像进行分割。为了能够最大程度地保持输入图像的亮度, 利用输入图像和输出图像的均值亮度最小误差(AMBE)准则, 重新计算了图像的均衡范围。最后, 利用新的均衡范围分别对每一个子图像进行均衡。实验表明, 使用本算法处理Lena图的绝对均值亮度误差为0416 4, 明显优于使用RLBHE算法的0629 5。本算法能够获得更清晰的图像细节, 同时图像的整体亮度保持的也较好。

Abstract

In recent years, many histogram equalization algorithms have been proposed for the consumer electronics field. However, many of these algorithms are hard to realize. Even, for example, some algorithms may cause an effect on brightness saturation. Therefore, a range limited adaptive brightness preserving multi-threshold histogram equalization(RLAMHE) algorithm is presented in this paper. First, the input image is smoothed appropriately to obtain the number of its histogram peak points (N+1). Then the Otsu algorithm is extended by the N-threshold, and N segmentation thresholds of the image are obtained in this way, so that the image is segmented according to this threshold. In order to maximize the brightness of the input image, a range of the equalized image is recalculated according to the minimum Absolute Mean Brightness Error(AMBE) criterion of the input and the output image. Finally, all sub-images are equalized separately using the new equalization range. Test results show that the proposed algorithm is more efficient than other algorithms and can obtain sharper image details. Meanwhile, the overall brightness of the image is also ideal. Using this algorithm to process Lena graphs, the absolute mean luminance error is 0416 4, which is obviously better than that obtained using RLBHE algorithm(0629 5).

投稿润色
补充资料

中图分类号:TP391.41

DOI:10.3788/co.20171006.0726

所属栏目:信息光学

基金项目:江苏省高校自然科学研究面上项目(No.17KJD140002); 无锡太湖学院自然科学基金(No.16WUNS005)

收稿日期:2017-06-11

修改稿日期:2017-08-13

网络出版日期:--

作者单位    点击查看

许轰烈:无锡太湖学院, 江苏 无锡 214064
匡 程:无锡太湖学院, 江苏 无锡 214064
张 乐:无锡太湖学院, 江苏 无锡 214064
李 莎:无锡太湖学院, 江苏 无锡 214064
王树军:无锡太湖学院, 江苏 无锡 214064
汤 峥:无锡太湖学院, 江苏 无锡 214064
李琳娜:无锡太湖学院, 江苏 无锡 214064

联系人作者:许轰烈(xhl1192008@hotmail.com)

备注:许轰烈(1986—), 男, 江苏无锡人, 博士, 主要从事数字图像处理、红外成像系统设计、数字视频技术等方面的研究。

【1】CHEN H O,NICHOLAS S P K,HAIDI I. Bi-histogram equalization with a plateau limit for digital image enhancement[J]. IEEE Trans. Consum. Electron,2009,55:2072-2080.

【2】MENOTTI D,NAJMAN L,FACON J,et al.. Multi-hirtogram equalization methods for contrast enhancement and brightness preserving[J]. IEEE Trans. Consum. Electron,2007,53:1186-1194.

【3】KIM Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Trans. Consum. Electron,1997,43:1-8.

【4】WAN Y,CHEN Q,ZHANG B M. Image enhancement based on equal area dualistic sub-image histogram equalization method[J]. IEEE Trans. Consum. Electron,1999,45:68-75.

【5】CHEN S D,RAMLI A R. Minimum mean brightness error bi-histogram equalization in contrast enhancement[J]. IEEE Trans. Consum. Electron,2003,49:1310-1319.

【6】SIM K S,TSO C P,TAN Y Y. Recursive sub-image histogram equalization applied to gray scale images[J]. Pattern Recognit. Lett.,2007,28:1209-1221.

【7】ZUO CH,CHEN Q,SUI X B. Range limited bi-histogram equalization for image contrast enhancement[J]. Optik,2013,124:425-431.

【8】WANG CH,YE ZH F. Brightness preserving histogram equalization with maximum entropy: a variational perspective[J]. IEEE Trans. Consum. Electron,2005,51:1326-1334.

【9】XIU CH B,WEI SH A N. Camshift tracking with saliency histogram[J]. Optics and Precision Engineering,2015,23(6):1749-1757.

【10】LI Y,ZHANG Y F,NIAN L,et al.. Infrared image enhancement method based on scale varies Retinex theory[J]. Chinese J. Liquid Crystals and Displays,2016,31(1):104-111.(in Chinese)

【11】ZHOU Y,LI Q W,HUO G Y. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Optics and Precision Engineering,2014,22(8):2215-2222.(in Chinese)

【12】XIAO CH M,SHI Z L,LIU Y P. Metrics of image background clutter by introducing gradient features[J]. Optics and Precision Engineering,2015,23(12):3472-3479.(in Chinese)

【13】CAO J F,SHI J CH,LUO H B,et al.. Image enhancement using clustering and histogram equalization[J]. Infrared and Laser Engineering,2012,41(12):3436-3441.(in Chinese)

【14】YUN H J,WU ZH Y,WANG G J,et al.. Enhancement of infrared image combined with histogram equalization and fuzzy set theory[J]. J. Computer-Aided Design & Computer Graphics,2015,27(8):1498-1505.(in Chinese)

【15】CHEN Y,ZHU M. Multiple sub-histogram equalization low light level image enhancement and realization on FPGA[J]. Chinese J. Optics,2014,7(2):225-233.(in Chinese)

【16】CAI SH D,YANG F. Image enhancement based on histogram modification[J]. Optoeletronic Technology,2012,32(3):155-159.(in Chinese)

引用该论文

XU Hong-lie,KUANG Cheng,ZHANG Le,LI Sha,WANG Shu-jun,TANG Zheng,LI Lin-na. Range limited adaptive brightness preserving multi-threshold histogram equalization algorithm[J]. Chinese Optics, 2017, 10(6): 726-736

许轰烈,匡 程,张 乐,李 莎,王树军,汤 峥,李琳娜. 范围限制的自适应亮度保持多阈值直方图均衡算法研究[J]. 中国光学, 2017, 10(6): 726-736

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF